引用本文:王堃,师华定,高佳佳,王晨龙,滑申冰,高庆先,等.CCSM4/WRF-CMAQ动力降尺度预估RCP8.5情景下京津冀地区空气质量的潜在变化[J].环境科学研究,2017,30(11):1661-1669.
WANG Kun,SHI Huading,GAO Jiajia,WANG Chenlong,HUA Shenbing,GAO Qingxian,et al.Potential Variation of Beijing-Tianjin-Hebei Region's Air Quality in RCP8.5 Scenarios by Dynamic Downscaling Method with CCSM4/WRF-CMAQ Model[J].Reserrch of Environmental Science,2017,30(11):1661-1669.]
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 111次   下载 149 本文二维码信息
码上扫一扫!
分享到: 微信 更多
CCSM4/WRF-CMAQ动力降尺度预估RCP8.5情景下京津冀地区空气质量的潜在变化
王堃1, 师华定2, 高佳佳1, 王晨龙1, 滑申冰3, 高庆先2
1. 北京市劳动保护科学研究所, 北京 100054;2. 中国环境科学研究院, 北京 100012;3. 中国电力科学研究院, 北京 100192
摘要:
目前,针对气候变化对区域空气质量影响的研究相对较少,并且多采用统计降尺度方法对全球气候模式结果进行处理.采用WRF中尺度气象模式对CCSM4气候模式的CMIP5 RCP8.5情景预估结果进行动力降尺度处理,并为CMAQ空气质量模式提供气象场;在2012年清华大学MEIC大气污染物排放清单的基础上,选取2005年作为气候现状代表年、2049-2051年作为未来气候代表年,对京津冀地区典型月份(1月、4月、7月、10月)的气象及空气质量数值模拟结果进行对比,以此预估气候变化背景下京津冀地区空气质量潜在变化.结果表明,在排放情况不变及RCP8.5情景下,未来代表年与现状代表年相比,京津冀地区以典型月份为代表的年均气象因素整体呈现温度升高,风速、相对湿度及大气边界层高度均降低的趋势;年均大气污染物浓度整体呈现升高的趋势,其中,温度升高约0.8℃,风速降低约0.11 m/s,相对湿度降低约2%,大气边界层高度降低约8 m,ρ(PM2.5)升高约2.4 μg/m3ρ(SO2)升高约1.8 μg/m3ρ(NOx)升高约1.0 μg/m3;此外,主要的气象条件(温度、风速、相对湿度、大气边界层高度)中,风速及大气边界层高度的降低可能是造成这些大气污染物浓度变化的主要气象因素,并且风速及大气边界层高度的降低与ρ(PM2.5)降低的相关系数分别约为-0.44和-0.26.研究显示,气候变化会对京津冀地区造成污染物浓度升高的潜在风险,同时由于现阶段缺乏可用于空气质量模式的未来排放情景数据、在线耦合模式日臻完善,在我国气候-空气质量的研究领域亟待进行更深层次的研究.
关键词:  CCSM4  CMAQ  动力降尺度  气候变化
DOI:10.13198/j.issn.1001-6929.2017.03.12
分类号:X51
基金项目:国家自然科学基金项目(21607008);国家环境保护公益性行业科研专项(201509001);中国环境科学研究院院属项目(2016YSKY-003)
Potential Variation of Beijing-Tianjin-Hebei Region's Air Quality in RCP8.5 Scenarios by Dynamic Downscaling Method with CCSM4/WRF-CMAQ Model
WANG Kun1, SHI Huading2, GAO Jiajia1, WANG Chenlong1, HUA Shenbing3, GAO Qingxian2
1. Beijing Municipal Institute of Labor Protection, Beijing 100054, China;2. Chinese Research Academy of Environmental Sciences, Beijing 100012, China;3. China Electric Power Research Institute, Beijing 100192, China
Abstract:
Currently, there are few studies on the relationship between climate change and air quality, and most of those which do exist adopt the method of statistical downscaling. Here, we use a dynamic downscaling method to prepare WRF initial and boundary conditions with CCSM4 output under the CMIP5 RCP8.5 scenarios, and choose MEIC 2012 Data as CMAQ input inventory data in the Beijing-Tianjin-Hebei Region. In order to explore the impacts of meteorological conditions on air quality, monthly variation characteristics of PBL height (PBLH), relative humidity (RH), wind velocity, temperature and air pollutant concentrations were analyzed and compared between forecast years (2049, 2050, 2051) and baseline year (2005). The results indicated that in the case of constant emissions and RCP8.5 scenario, the meteorological conditions would become increasingly detrimental to atmospheric pollutant dispersion. In the forecast years:annual average temperature would increase about 0.8℃; annual average wind speed, RH and PBLH would decrease about 0.11 m/s, 2% and 8 m respectively; and annual average concentrations of PM2.5, SO2 and NOx would increase about 2.4, 1.8 and 1.0 μg/m3 respectively. The decline in surface wind speed and lower PBLH should be the main factors influencing the increasing trend of atmospheric pollutants; the correlation coefficients between PM2.5 concentration and wind speed and PBLH were -0.44 and -0.26 respectively. The results indicate that climate change will affect regional air quality, but the impact intensity is still uncertain due to the lack of future emission scenarios that are used in air quality models. Furthermore, the physical/chemical mechanisms among the mutual influence process between meteorological factors and pollutant dispersion also need to be further studied.
Key words:  CCSM4  CMAQ  dynamic downscaling  climate change  air quality