引用本文:杨茹月,李彤彤,杨天华,等.植物基因工程修复土壤重金属污染研究进展[J].环境科学研究,2019,32(8):1294-1303.
YANG Ruyue,LI Tongtong,YANG Tianhua,et al.Advances in Enhanced Phytoremediation by Genetic Engineering Technology for Heavy Metal Pollution in Soil[J].Research of Environmental Sciences,2019,32(8):1294-1303.]
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 325次   下载 309 本文二维码信息
码上扫一扫!
分享到: 微信 更多
植物基因工程修复土壤重金属污染研究进展
杨茹月1,2, 李彤彤2, 杨天华1, 李艳平2, 刘慧2, 王雷1, 吕宁磬2
1. 沈阳航空航天大学能源与环境学院, 辽宁省清洁能源重点实验室, 辽宁 沈阳 110136;2. 中国环境科学研究院, 北京 100012
摘要:
土壤重金属污染植物修复技术应用广泛,但超富集植物的寻找耗时费力,现存超富集植物通常生长缓慢、生物量低、地域限制较大,导致植物修复效果不能达到预期.基因工程在植物修复中的应用,为提高植物修复土壤重金属污染的效率提供了新的思路.通过综述基因工程强化植物修复土壤重金属污染的研究进展,着重关注植物修复关于重金属转运、储存、解毒过程的调控过程,主要包括:①控制植物体内重金属由胞外运移至胞内的关键基因,主要有锌铁调控蛋白、黄色条纹样蛋白、天然抗性相关巨噬细胞蛋白,作为载体参与重金属在植物体内的不同组织的转运.②改变重金属在细胞内储存位置、提高植物耐受能力的关键基因,主要调控ATP结合盒转运器、阳离子扩散促进器和P1B型ATPases,通过增强植物对重金属的区隔化能力来实现储存功能.③降低重金属对植物毒害作用的关键基因,主要调控植物体内植物络合素、金属硫蛋白的大量合成,并络合重金属形成螯合物.根据植物基因对重金属超耐性和超富集的作用机制,建议后续研究可利用基因工程向目标植物导入相关功能基因,使其在目标植物中高效表达,并在实际环境中进行植物生长测试应答机制,最终更好地调控植物体内重金属含量平衡关系,以克服超富集植物与环境适配性差的缺陷.
关键词:  土壤  重金属  植物修复  超富集植物  基因工程
DOI:10.13198/j.issn.1001-6929.2019.03.19
分类号:X53
基金项目:国家科技重大专项项目(No.2016ZX05040001-003);中央级公益性科研院所基本科研业务专项(No.201409030)
Advances in Enhanced Phytoremediation by Genetic Engineering Technology for Heavy Metal Pollution in Soil
YANG Ruyue1,2, LI Tongtong2, YANG Tianhua1, LI Yanping2, LIU Hui2, WANG Lei1, Lü Ningqing2
1. Key Laboratory of Clean Energy of Liaoning, College of Energy and Environment, Shenyang Aerospace University, Shenyang 110136, China;2. Chinese Research Academy of Environmental Sciences, Beijing 100012, China
Abstract:
Phytoremediation technology is widely used for heavy metal pollution control in soil. However, slow growth rate, relatively low biomass and regional type of plants often limit the extensive application of these existing hyperaccumulators, searching better hyperaccumulators to complete the remediation is time-consuming and laborious. The application of genetic engineering in phytoremediation provides new idea for improving the phytoremediation efficiency. In this paper, the enhancement of phytoremediation for heavy metal contamination in soil by genetic engineering are reviewed. Moreover, the regulation genes for phytoremediation process are emphatically introduced, which includes: (1) The key genes, controlling the migration of heavy metals from the extracellular to the intracellular, are often related to zinc-iron regulatory proteins, yellow stripe-like proteins, and natural-resistance-associated marophage protein. They participate as carriers during the translocation and the uptake process of heavy metals in different tissues of plants. (2) The key genes, changing the location of heavy metals in cells, often regulate ATP-binding cassette transporter, cation diffusion facilitator family and P1B type ATPase. They could improve the segregation ability of plants to heavy metals by controlling the intracellular transport of heavy metals. (3) The key genes related to phytochelatins and metallothionein, which reduce the toxicity to plants by forming stable chelates with heavy metals. All the regulation gene mentioned above reveal the entire process of heavy metal hypertolerance and hyperaccumulation characteristics. Hence it is suggested that reverse transcription used to improve expression of functional genes in the target plants might be better in the future, which is enable plants to grow in the natural environment. This method would regulate the balance of heavy metal content in plants, so as to overcome the shortcomings of poor environmental adaptability of hyperaccumulators.
Key words:  soil  heavy metals  phytoremediation  hyperaccumulator  genetic engineering