引用本文:
【打印本页】   【下载PDF全文】   View/Add Comment  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 64次   下载 52 本文二维码信息
码上扫一扫!
分享到: 微信 更多
以一种黏土矿物材料为非均相类芬顿催化剂对甲基橙的降解
阿旺次仁1, 李红娜1, 唐哲仁1, 彭怀丽1, 朱昌雄1, 李锺斗2, 方建雄3
1. 中国农业科学院农业环境与可持续发展研究所农业清洁流域团队, 北京 100081;2. 韩国(株)量子能技术研究所, 韩国 仁川 431-804;3. 韩国纽约州立大学QELBY研究院, 韩国 仁川 406-840
摘要:
为实现以甲基橙为代表的偶氮类染料的高效降解,采用一种黏土矿物材料——Quantum Energy® Radiating Material (下称QE)为催化剂,系统分析了其在非均相类芬顿反应中的催化剂协同静态吸附作用,并考察了不同因素对甲基橙去除效果的影响,同时基于降解过程中Fe2+和总Fe析出量(以ρ计)、·OH等的变化过程,探讨了QE降解甲基橙的作用机制.结果表明,QE对甲基橙具有良好的吸附作用,同时,其作为非均相类芬顿催化剂对甲基橙的降解受到pH、温度、c(H2O2)、催化剂投加量等因素的影响.优化后的降解条件:初始ρ(甲基橙)为50 mg/L、QE投加量为5 g/L、c(H2O2)为100 mmol/L、pH为2、温度为60℃,在该条件下反应40 min后,甲基橙的去除率可达到99%.以叔丁醇作为·OH淬灭剂,随着c(叔丁醇)的增高,反应体系中甲基橙的去除率随之下降,说明·OH在该体系甲基橙降解中起重要作用;对在反应过程中Fe2+和总Fe析出量的监测数据表明,体系中QE对甲基橙的降解为均相芬顿反应、非均相芬顿反应和吸附作用协同作用的结果.研究显示,以QE为催化剂,通过吸附协同催化氧化作用可以有效处理含甲基橙的染料废水.
关键词:  甲基橙  非均相类芬顿  催化剂  矿物材料  吸附  降解
DOI:10.13198/j.issn.1001-6929.2017.03.02
分类号:X592
基金项目:韩国量子能公司农业用颗粒(丸)粉末及使用方法在中国农业生产中实用效果测试计划[开(2015)1];国家水体污染控制与治理科技重大专项(2014ZX07101-012-001)
Clay Mineral Material as Catalyst in Fenton-Like Reactions for Degradation of Methyl Orange
AWANG Ciren1, LI Hongna1, TANG Zheren1, PENG Huaili1, ZHU Changxiong1, LEE Jongdoo2, BAHNG Gunwoong3
1. Agricultural Clear Watershed Group, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China;2. Quantum Energy Research Center, Incheon 431-804, Republic of Korea;3. QELBY Institute in State University of New York, Incheon 431-804, Republic of Korea
Abstract:
‘Quantum Energy® Radiating Material’ (QE), a type of clay mineral material, was applied in the degradation of azo dye (represented by methyl orange). The synergistic effects of both static adsorption and heterogeneous Fenton-type catalyst of QE were systematically analyzed, and their effects on methyl orange degradation under different influencing factors were also discussed. The degrading mechanism of methyl orange with QE was then discussed based on the monitoring of ferrous ion, total iron and hydroxyl free radicals during the whole process. The results showed that QE showed good adsorption capacity, and the effectiveness of degradation of methyl orange was influenced by pH, temperature, the concentration of H2O2 and the dosage of catalyst when QE was used as the heterogeneous Fenton-type catalyst. The removal rate of methyl orange could reach 99% under the optimized conditions of 50 mg/L ρ(methyl orange), 5 g/L ρ(QE), 100 mmol/L c(H2O2), pH 2.0 and temperature 60℃ for 40 min. Furthermore, the production of·OH and its significant function in methyl orange degradation was demonstrated after tertiary butanol was added as the scavenger of·OH in the system. In combination with the monitoring data of the Fe2+ and total Fe in the process, it was indicated that the degradation of methyl orange was the synergic result of adsorption with QE, and reactions in homogeneous and heterogeneous phases as well. These results showed that application of QE through adsorption and oxidation is effective in disposing wastewater with methyl orange.
Key words:  methyl orange  heterogeneous Fenton-like  mineral material  catalysis  adsorption  degradation