环境科学研究  2017, Vol. 30 Issue (4): 545-551  DOI: 10.13198/j.issn.1001-6929.2017.01.78

引用本文  

张潆元, 黑鹏飞, 杨静, 等. 本底吸附物对长江沉积物磷吸附容量的影响[J]. 环境科学研究, 2017, 30(4): 545-551.
ZHANG Yingyuan, HEI Pengfei, YANG Jing, et al. Effects of Native Adsorptive Substances on Phosphorus Adsorption Capacity of Yangtze River Sediment[J]. Research of Environmental Sciences, 2017, 30(4): 545-551.

基金项目

国家水体污染控制与治理科技重大专项(2012ZX07505-005)

责任作者

黑鹏飞(1972-), 男, 陕西榆林人, 讲师, 博士, 主要从事水污染控制工程, heipf06@mails.tsinghua.edu.cn

作者简介

张潆元(1991-), 女, 贵州铜仁人, zyingyuan07@126.com

文章历史

收稿日期:2016-08-27
修订日期:2017-01-03
本底吸附物对长江沉积物磷吸附容量的影响
张潆元1 , 黑鹏飞1 , 杨静1 , 金军1 , 周刚2     
1. 中央民族大学生命与环境科学学院, 北京 100081;
2. 中国环境科学研究院, 国家环境保护河口与海岸带环境重点实验室, 北京 100012
摘要:分别选取三峡大坝上游寸滩河段和下游武汉河段沉积物,用不同浓度(0~3 mol/L)的HCl对沉积物进行清洗,降低本底吸附w(P)、w(Fe)、w(Al)、w(Ca)及w(OM)(OM为有机质),通过测定沉积物的P平衡吸附量,研究长江沉积物上本底吸附物对P吸附容量的影响.结果表明:① 经稀HCl清洗后,两种沉积物的w(Ca)、w(OM)、w(P)均显著减少,沉积物的P平衡吸附量随之减少,而w(Fe)、w(Al)则没有明显变化,同时,沉积物对P的平衡吸附量、沉积物中w(TP)均与本底w(Ca)、w(OM)呈显著正相关(P < 0.05),因此长江沉积物对P的吸附容量的主要影响因素为本底吸附OM和Ca;② 三峡库区内沉积物中w(OM)及w(Ca)较高,二者分别为72.64、63.52 mg/g,三峡大坝下游武汉段沉积物中则相对偏低,二者分别为52.20、45.03 mg/g,说明库区沉积物的P吸附容量明显大于大坝下游沉积物,在三峡水库运行前期,沉积物的P吸附量将逐渐增加,成为三峡水库运行后期富营养化的潜在內源.
关键词本底吸附    沉积物    吸附        长江    
Effects of Native Adsorptive Substances on Phosphorus Adsorption Capacity of Yangtze River Sediment
ZHANG Yingyuan1 , HEI Pengfei1 , YANG Jing1 , JIN Jun1 , ZHOU Gang2     
1. College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China;
2. Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
Abstract: The effects of native adsorptive substances in sediment on the P adsorption capacity of the Yangtze River were investigated.Sediments sampled from Cuntan and Wuhan were washed with HCl of different concentrations, and the native adsorptive P, Fe, Al, Ca and organic matter(OM) on sediment released by different degrees was studied.The washed sediments were then used to investigate the P adsorption capacity by batch equilibrium adsorption experiments.The results showed that:(1) after being washed by diluted HCl, the contents of Fe and Al on sediment had little change, while the contents of Ca, OM, as well as P decreased significantly, which caused a reduction of P equilibrium adsorption capacity.A significant positive correlation(P < 0.05) was observed between the equilibrium adsorption capacity of P and the content of TP and Ca, OM.Therefore, the native adsorptive OM and Ca on sediment were of great impact on the P adsorption capacity.(2) The contents of OM and Ca of sediment from Cuntan(OM:72.64 mg/g, Ca:63.52 mg/g) were significantly higher than those from Wuhan(OM:52.20 mg/g, Ca:45.03 mg/g), which indicated that the P adsorption capacity of sediment in the upstream of the Three Gorges Dam was much higher than that in the downstream.Namely, during the early operation of the Three Gorges reservoir, the sediment here can be a 'sink' for external P, and the adsorption on sediment increases gradually.However, along with the running time extension, the sediment will be a potential internal P load.
Keywords: native adsorptive substances    sediment    adsorption    phosphorus    Yangtze River    

P是水生态系统的重要生源物质和水体富营养的主要限制因子[1],过量的P将引起水体富营养化.沉积物作为P的“源”和“汇”[2-3],对P的吸附及释放作用是P在水生态系统中输运的主要过程之一.研究表明,即使切断外源,内源污染依然可使水体保持富营养化数年甚至数十年(如6年[4]、10年[5]).沉积物与P的相互作用机理研究可为水体富营养化防治提供必要的理论基础.

长江三峡水库在发挥防洪、发电和航运效益的同时,也改变了其上下游的水沙条件和营养输送[6-7].自蓄水以来,据报道,来自长江上游近70%的年输沙量被截留在三峡库区内[8],年均2.14×104 t的P随沉积物“滞留”在库底不能被输送至下游[6],严重破坏了长江流域的P平衡[9-10],导致库区支流香溪河等屡次出现富营养化现象[11-12].而有研究表明,在沉积物与P的相互作用过程中,本底吸附物质扮演着不容忽视的角色[13].所谓本底吸附物,指的是沉积物的原生矿物基质在与水中污染物长期作用下,表面所吸附的OM(有机质)、P、重金属等外来次生物质,目前主要关注的是P、Ca、Fe[14]、Al[15]等活性金属及OM[16]等,如WANG等[16]研究表明,沉积物表面附着的OM对P有较强的亲和性;Fe/Al氢氧化物因有较大的比表面积,可以增加沉积物对P的吸附容量;颗粒态碳酸盐对水体溶解态磷酸盐的吸附与共沉淀作用也常见报道[17],ZHOU等[13]为减小本底吸附P的影响,提出了修正的Langmuir模型.正确理解沉积物与P相互作用机理,必须考虑本底吸附物对沉积物P的吸附特性的影响[13, 18],但是目前鲜见关于长江流域沉积物在不同本底吸附条件下的吸附特性的系统研究.

该研究分别选取位于长江三峡大坝上、下游的重庆寸滩、武汉河段表层沉积物样本,通过HCl清洗获得不同本底吸附P、Fe、Al、Ca及OM的沉积物样品,分析不同沉积物样品对P的平衡吸附量,研究不同本底吸附对于P吸附特性的影响规律,以期为三峡水库的生态调度提供理论参考.

1 材料与方法 1.1 样品采集与分析

0~15 cm沉积物与上覆水是水体和沉积物之间物质输送与交换的重要边界环境[19].该研究采用抓斗式采样器分别在长江三峡库区重庆寸滩河段(29°37′24″N、106°36′09″E)、三峡大坝下游的武汉河段(30°35′36″N、114°18′16″E)采集0~15 cm表层沉积物.样品采集后,沥干水分装入聚乙烯塑料采样袋,排出空气后密封,运回实验室.部分样品置于德国Christ冻干机中干燥,随后对其基本物理化学性质进行分析.沉积物中的w(OM)用550 ℃烧失量(LOI)表示;金属元素通过对沉积物压片制样后,采用日本岛津X射线荧光光谱仪(XRF-1800) 分析测量;沉积物粒径组成经美国麦奇客激光粒度仪(S-3500) 分析,随后被分为黏土(<0.002 mm)、粉沙(0.002~0.05 mm)和沙粒(0.05~2 mm)[20].测定w(TP)与w(TN)时,分别将样品用浓H2SO4与HCl消解后再用分光光度法测量.剩余的沉积物自然风干后,武汉段沉积物筛分出D1(<0.05 mm)和D2(0.1~0.2 mm)两个粒径组,寸滩段沉积物的最大粒径约为0.1 mm,则筛分出D1(<0.05 mm)及D3(0.05~0.1 mm)两个粒径组用于后续试验.

1.2 沉积物本底吸附的清洗

稀HCl常被用于沉积物中污染物的提取,以及沉积物的清洗[21-22].目前,用于沉积物上污染物提取的c(HCl)常在1 mol/L以内[23],然而,用于沉积物清洗的c(HCl)尚不统一.YOKOO等[24]研究发现,浓度较高的HCl(如3 mol/L)将对沉积物的硅酸盐结构造成破坏.该试验在已有研究基础上,选择0、0.1、0.5、1.0、3.0 mol/L的HCl对天然沉积物进行清洗,以获得不同本底吸附条件的沉积物样品.称取10.0 g沉积物样品置于干燥的150 mL具塞锥形瓶中,缓缓加入100 mL HCl溶液,盖上塞子置于25 ℃恒温振荡器中,160 r/min下振荡2 h后真空抽滤,并用去离子水反复清洗,直至滤液的pH与去离子水一致.根据清洗所用c(HCl)将清洗后的沉积物分别命名为S0、S0.1、S0.5、S1、S3,于烘箱中110 ℃烘干后置于干燥器中备用.

取清洗后的沉积物,分析清洗后沉积物中w(本底吸附物)的变化.w(TP)用欧洲标准测试测量组织所建立的SMT法[25]测定:将0.2 g沉积物用3.5 mol/L HCl消解16 h后,经钼蓝法测量[26]w(Fe)、w(Al)、w(Ca)及w(OM)测量方法同1.1节.

为更直观地观测到本底吸附去除前后沉积物颗粒的变化,将干燥的各沉积物样品分别均匀地黏在导电胶布以及样品托上,喷金处理后用日本日立S-4800场发射扫描电镜(SEM)对其微观形貌进行观察.

1.3 平衡吸附试验

称取各采样点不同粒径的清洗沉积物样品1.0 g,分别置于150 mL具塞锥形瓶中,缓缓加入20 mg/L的磷酸二氢钾(KH2PO4)溶液100 mL,将锥形瓶置于25 ℃恒温振荡器中以转速160 r/min振荡24 h使吸附达到平衡状态,随后将溶液过0.45 μm醋酸纤维滤膜,用钼蓝法测量滤液中的ρ(P).对照试验采用100 mL的KH2PO4溶液进行相同的操作,减小溶液蒸发以及玻璃壁吸附等引起的试验误差.记对照试验ρ(P)为初始ρ(P)(C0).整个试验平行做3次,试验结果为3个平行样的算术平均值,平行样间变异系数均小于15%.平衡吸附量的计算方法:

$Q = V(C_0 - C_{\rm{e}}) / m$ (1)

式中:Q为平衡吸附量,mg/g;C0Ce分别为溶液中P的初始质量浓度和平衡质量浓度,mg/L;V为溶液体积,mL;m为沉积物的质量,g.

2 结果与分析 2.1 沉积物的基本理化特性

武汉、重庆寸滩河段沉积物的基本理化性质见表 1.由表 1可见,2个采样点间沉积物的理化性质差异明显,位于三峡库区内的重庆寸滩段沉积物中w(TP)、w(TN)远高于三峡大坝下游的武汉段沉积物,同时,库区内沉积物的w(OM)及w(Ca)也显著高于大坝下游的武汉段沉积物,武汉段沉积物中沙粒所占比例最大,为65.46%;其次是粉沙,占34.54%.位于库区内的寸滩段沉积物则是φ(粉沙)最多,为72.78%;其次是沙粒,占26.28%.两种沉积物的φ(黏土)都几乎为零.自水库运行以来,库区流速下降,导致大量的悬移质沉降,库区内沉积物粒级细化;而大坝下游悬移质大量减少,导致其河段堤岸冲刷加剧,沉积物粗化.同时,沉积物颗粒的污染程度跟天然水体的污染程度直接相关,三峡库区水体污染较重屡见报道[9-10],沉积物上w(本底吸附物)也相应较高,进一步说明了沉积物的性质与所处水环境密切相关.

表 1 沉积物样品的基本理化性质 Table 1 Basic physicochemical properties of sediment samples
2.2 沉积物本底吸附量变化

沉积物的组成包括基体成岩作用所形成的基质以及与水中污染物长期作用下,表面所吸附的营养盐、金属氧化物、矿物盐、有机污染物以及重金属等物质[27].本底吸附物质与沉积物的结合一般较为松散,在一定的条件下能再次释放.不同c(HCl)对沉积物中本底吸附物的去除效果如图 1所示.

图 1 不同浓度的HCl清洗下沉积物中w(Fe)、w(Al)、w(Ca)、w(OM)及w(P)的变化 Figure 1 Variation in w(Fe), w(Al), w(Ca), w(OM)and w(P)of sediment after washed by HCl of different concentrations

在试验浓度范围(0~3.0 mol/L)的HCl作用下,沉积物中w(Fe)和w(Al)无明显变化.研究[28]表明,来源于长江水体中的溶解w(Fe)、w(Al)均在检测限以下,因此长江沉积物中本底吸附Fe、Al很少;Sutherland[29]研究也表明,沉积物中的Fe、Al主要来自基质,在残渣态常量元素中所占比例较高,具有惰性难迁移性.在0~0.5 mol/L的HCl清洗后,2个采样点沉积物中w(Ca)剧烈减少,寸滩河段由48.84 mg/g降至6.27 mg/g,武汉段则由39.28 mg/g降至7.43 mg/g,随后在0.5~3.0 mol/L的HCl作用下,w(Ca)保持稳定,说明在c(HCl)为0.5 mol/L时本底吸附的碳酸盐已接近去除,剩下的Ca主要来源于成岩作用,这与Sutherland[29]的研究结果相一致,c(HCl)在0.1 mol/L时,Ca的去除量约占本底吸附Ca的50%,0.5 mol/L的HCl能有效去除沉积物中的生物碳酸盐而较少地溶解碎屑碳酸盐.沉积物中w(OM)在不同浓度的HCl作用下的变化规律与w(Ca)几乎一致.0.5 mol/L HCl清洗后,寸滩河段沉积物w(OM)由110.63 mg/g降至64.18 mg/g,武汉河段w(OM)由76.65 mg/g降至45.69 mg/g,继续增加HCl溶液浓度,w(OM)几乎不变.沉积物表面络合的矿物质(主要是钙盐)不仅对水体中PO43-有良好的络合作用,同时也是沉积物表面OM形成的基础[30],因此表面吸附钙盐的去除同时也是表面OM的去除.HCl对沉积物本底P的去除效果较好, 在0~0.1 mol/L HCl作用下,沉积物本底w(P)仅有少量的减少,原因可能是低浓度HCl易被沉积物上碱性盐类物质(如碳酸钙)中和[31],在0.1~1.0 mol/L范围内,两种沉积物中w(P)均剧烈减少,寸滩河段由1.06 mg/g降至0.31 mg/g,武汉河段由0.98 mg/g降至0.51 mg/g,而继续增大HCl溶液浓度对P的去除效率大幅减缓.

天然沉积物颗粒是以矿物颗粒(主要是黏土矿物)作为核心骨架,OM、N、P以及金属氧化物等本底吸附物结合于矿物颗粒表面所形成.因此沉积物的表面形态与其矿物骨架和污染程度均有很大关系,在不同本底吸附条件下,沉积物颗粒微观形貌呈现出各自的特性.以武汉段D1(<0.05 mm)粒径沉积物为例,对不同本底吸附条件下的沉积物进行微观形貌观测.放大2 000倍的沉积物SEM结果如图 2所示,天然沉积物颗粒表面呈现出复杂的不规则结构,由大量的小细颗粒包裹着,随着c(HCl)的增加,沉积物本底吸附物质逐渐减少,附着在沉积物表面的小颗粒逐渐减少,0.5~1.0 mol/L的HCl处理下的表面形貌较天然沉积物光滑很多,甚至裸露出沉积物基体.由此可见,沉积物颗粒在污染水体中经过复杂的物理、化学和生物变化过程,形貌发生了较大改变,表面会增加很多吸附的水体污染物形成的小颗粒结构[32],经0.1 mol/L的HCl清洗后,表面颗粒结构有少量减少,而在0.5~1.0 mol/L的HCl处理后,能较大程度地去除本底吸附物所形成的小颗粒结构.

图 2 武汉段D1(<0.05 mm)粒径沉积物的SEM图像 Figure 2 SEM images of the washed sediment samples from Wuhan in the Yangtze River(Sample D1)
2.3 不同本底吸附条件下沉积物对P的平衡吸附量

沉积物对P的平衡吸附量常用于评价沉积物对P的吸附能力,同时也是沉积物与P相互作用机理模型中的重要参数,不同本底吸附条件下的沉积物对P的平衡吸附量见图 3.由3个粒径沉积物的P平衡吸附量可以看出,随着粒径的增大,平衡吸附量越小;在同一粒径范围内(D1<0.05 mm),武汉段沉积物对P的平衡吸附量大于寸滩段沉积物,考虑到其沉积物中w(OM)及w(Ca)均低于寸滩段,分析原因可能是寸滩段沉积物中本底吸附P较多,占据大量吸附位点,这也说明沉积物对P的吸附行为受到颗粒粒径和本底吸附物等性质的共同影响.

图 3 不同本底吸附条件下沉积物对P的平衡吸附量 Figure 3 The equilibrium adsorption capacity of P on sediments washed with HCl of different concentrations

总体而言,沉积物上本底吸附物的减少引起了平衡吸附量减少.采用0~0.5 mol/L的HCl清洗后,沉积物对P的平衡吸附量急剧下降,究其原因是本底吸附Ca及OM的大量去除;随后,随着c(HCl)增加,沉积物上的金属元素及w(OM)已趋于稳定,本底吸附的w(P)还在减少,为溶液中的PO43-提供一定的空白吸附位,使平衡吸附量相对有所回升.当c(HCl)为1.0~3.0 mol/L时,沉积物中的本底吸附物质已近乎去除,而平衡吸附量仍有所下降,究其原因是沉积物对P的吸附机制除有机质及金属氧化物等的配位吸附外,还存在空隙填充方式,而3.0 mol/L的HCl对沉积物的表层结构产生破坏,引起其表面孔隙的坍塌[33-34].

2.4 平衡吸附量与各元素本底吸附量的相关性

寸滩河段与武汉河段沉积物理化特性间的相关性分析见表 2.从表 2可看出,两种沉积物中w(TP)均与w(OM)及w(Ca)显著正相关(P<0.05),寸滩河段沉积物中相关系数分别为0.944和0.928,武汉段沉积物则为0.909和0.890,说明沉积物上的Ca及OM对P的吸附有重要作用[35-36].TP与Fe、Al的相关性较弱,这可能与沉积物中P的赋存形态有关.除此之外,Ca与OM的相关性也极为显著(P<0.01),说明在长江流域沉积物中的本底吸附OM是通过与钙质矿物颗粒相互共生而富集,形成钙键腐殖质[37].

表 2 寸滩、武汉河段沉积物理化性质之间的相关性分析 Table 2 Correlation analysis between physicochemical properties of sediments from Cuntan and Wuhan

在分析沉积物本底吸附量与P平衡吸附量的相关性时,由不同本底吸附条件下沉积物的化学性质与对P的平衡吸附量相关性分析(见表 3)可以得出.平衡吸附量与沉积物中w(Ca)、w(OM)呈显著正相关,说明Ca及OM是沉积物吸附P的重要影响因子[38];其次,沉积物的本底吸附P与平衡吸附量呈极显著正相关,这与其他文献[13, 39]报道的“本底吸附P因占据吸附位,与沉积物的吸附容量成反比”不符,主要是因为化学吸附在沉积物对P的吸附中占主导地位,当把本底吸附P及活性金属元素、OM等同时去除时,后者对沉积物吸附P的影响远超过本底吸附P.

表 3 长江寸滩、武汉段沉积物对P的平衡吸附量与本底吸附物质的相关性分析 Table 3 Correlation analysis between the equilibrium adsorption capacity of P and the adsorptive substances on sediment from Cuntan, Wuhan
3 结论

a)本底吸附OM及Ca对长江沉积物吸附P的容量有较大影响,随着二者含量的减少,P平衡吸附量也逐渐减少,本底吸附Fe、Al及P对长江沉积物的吸附容量影响则较小,相关性分析也显示,沉积物中w(TP)以及沉积物对P的平衡吸附量均与w(Ca)、w(OM)呈显著正相关(P<0.05).

b)三峡库区内的沉积物中w(OM)及w(Ca)较高,二者分别为72.64、63.52 mg/g;三峡大坝下游武汉段沉积物中则相对偏低,二者分别为52.20、45.03 mg/g;而两种沉积物中w(Fe)、w(Al)相近,这说明库区沉积物的P吸附容量明显大于大坝下游沉积物,这将会增加水库运行初期库区沉积物P的蓄积量,成为三峡水库运行后期富营养化的潜在內源.

参考文献
[1]
CARNEIRO C, KELDERMAN P, IRVINE K. Assessmentof phosphorus sediment-water exchange through water and mass budget in Passaúna Reservoir(Paraná State, Brazil)[J]. Environmental Earth Sciences, 2016, 75(7): 1-12. (0)
[2]
FANG Hongwei, CHEN Minghong, CHEN Zhihe, et al. Effects of sediment particle morphology on adsorption of phosphorus elements[J]. International Journal of Sediment Research, 2013, 28(2): 246-253. DOI:10.1016/S1001-6279(13)60035-9 (0)
[3]
LURLING M, MACKAY E, REITZEL K, et al. Editorial:a critical perspective on geo-engineering for eutrophication management in lakes[J]. Water Research, 2016, 97: 1-10. DOI:10.1016/j.watres.2016.03.035 (0)
[4]
KOHLER J, HILT S, ADRIAN R, et al. Long-term response of a shallow, moderately flushed lake to reduced external phosphorus and nitrogen loading[J]. Freshwater Biology, 2005, 50(10): 1639-1650. DOI:10.1111/fwb.2005.50.issue-10 (0)
[5]
WELCH E B, COOKE G D. Internal phosphorus loading in shallow lakes:importance and control[J]. Lake and Reservoir Management, 2005, 21(3): 209-217. (0)
[6]
WU Yanhong, WANG Xiaoxiao, ZHOU Jun, et al. The fate of phosphorus in sediments after the full operation of the Three Gorges Reservoir, China[J]. Environmental Pollution, 2016, 214: 282-289. DOI:10.1016/j.envpol.2016.04.029 (0)
[7]
YANG Z, WANG H, SAITO Y, et al. Dam impacts on the Changjiang(Yangtze) River sediment discharge to the sea:the past 55 years and after the Three Gorges dam[J]. Water Resourse Research, 2006, 42(4): 501-517. (0)
[8]
ZENG Hui, SONG Lirong, YU Zhigang, et al. Distribution of phytoplankton in the Three-Gorge Reservoir during rainy and dry seasons[J]. Science of the Total Environment, 2006, 367(2/3): 999-1009. (0)
[9]
HUANG Lei, FANG Hongwei, REIBLE D. Mathematical model for interactions and transport of phosphorus and sediment in the Three Gorges Reservoir[J]. Water Research, 2015, 85: 393-403. DOI:10.1016/j.watres.2015.08.049 (0)
[10]
曹慧群, 李青云, 陈野. 三峡水库运行对长江干流磷传输的影响及对策[J]. 人民长江, 2014(15): 14-17.
CAO Huiqun, LI Qingyun, CHEN Ye. Impacts of Three Gorges Reservoir operation on phosphorus transportation in mainstream of Yangtze River and countermeasures[J]. Yangtze River, 2014(15): 14-17. (0)
[11]
JIANG Liguo, LIANG Bing, XUE Qiang, et al. Characterization of phosphorus leaching from phosphate waste rock in the Xiangxi River watershed, Three Gorges Reservoir, China[J]. Chemosphere, 2016, 150: 130-138. DOI:10.1016/j.chemosphere.2016.02.008 (0)
[12]
SHI Rujie. Ecological Environment Problems of the Three Gorges Reservoir Area and countermeasures[J]. Procedia Environmental Sciences, 2011, 10(1): 1431-1434. (0)
[13]
ZHOU Aimin, TANG Hongxiao, WANG Dongsheng. Phosphorus adsorption on natural sediments:modeling and effects of pH and sediment composition[J]. Water Research, 2005, 39(7): 1245-1254. DOI:10.1016/j.watres.2005.01.026 (0)
[14]
张仕军, 齐庆杰, 王圣瑞, 等. 洱海沉积物有机质、铁、锰对磷的赋存特征和释放影响[J]. 环境科学研究, 2011, 24(4): 371-377.
ZHANG Shijun, QI Qingjie, WANG Shengrui, et al. Effects of organic matter, manganese and iron on phosphorus fractions and release in the sediments of Erhai Lake[J]. Research of Environmental Sciences, 2011, 24(4): 371-377. (0)
[15]
HUSER B J, PILGRIM K M. A simple model for predicting aluminum bound phosphorus formation and internal loading reduction in lakes after aluminum addition to lake sediment[J]. Water Research, 2014, 53(8): 378-385. (0)
[16]
WANG Shengrui, JIN Xiangcan, ZHAO Haichao, et al. Effect of organic matter on the sorption of dissolved organic and inorganic phosphorus in lake sediments[J]. Colloids and Surfaces A Physicochemical and Engineering Aspects, 2007, 297(1/2/3): 154-162. (0)
[17]
BERG U, NEUMANN T, DONNERT D, et al. Sediment capping in eutrophic lakes-efficiency of undisturbed calcite barriers to immobilize phosphorus[J]. Applied Geochemistry, 2004, 19(11): 1759-1771. DOI:10.1016/j.apgeochem.2004.05.004 (0)
[18]
WANG Ying, SHEN Zhenyao, NIU Junfeng, et al. Adsorption of phosphorus on sediments from the Three-Gorges Reservoir(China) and the relation with sediment compositions[J]. Journal of Hazardous Materials, 2009, 162(1): 92-98. DOI:10.1016/j.jhazmat.2008.05.013 (0)
[19]
王永平, 朱广伟, 洪大林, 等. 沉水植物对沉积物-水界面环境特征的影响[J]. 环境科学研究, 2012, 25(10): 1133-1139.
WANG Yongping, ZHU Guangwei, HONG Dalin, et al. Effects of macrophytes on the environmental characteristics of sediment-water interface[J]. Research of Environmental Science, 2012, 25(10): 1133-1139. (0)
[20]
JIN Xiangcan, WANG Shenrui, PANG Yan, et al. The adsorption of phosphate on different trophic lake sediments[J]. Colloids and Surfaces A Physicochemical and Engineering Aspects, 2005, 254(1/2/3): 241-248. (0)
[21]
ZHANG Kun, CHENG Pengda, ZHONG Baochang, et al. Total phosphorus release from bottom sediments in flowing water[J]. Journal of Hydrodynamics, 2012, 24(4): 589-594. DOI:10.1016/S1001-6058(11)60281-3 (0)
[22]
方红卫, 陈明洪, 陈志和. 沉积物颗粒污染前后表面孔隙力学特征分析[J]. 中国科学(G辑:物理学力学天文学), 2008(6): 714-720.
FANG Hongwei, CHEN Minghong, CHEN Zhihe. Surface pore tension and adsorption characteristics of polluted sediment[J]. Science in China(Series G:Physics, Mechanics and Astronomy), 2008(6): 714-720. (0)
[23]
SNAPE I, SCOULLER R C, STARK S C, et al. Characterisation of the dilute HCl extraction method for the identification of metal contamination in Antarctic marine sediments[J]. Chemosphere, 2004, 57(6): 491-504. DOI:10.1016/j.chemosphere.2004.05.042 (0)
[24]
YOKOO Y, NAKANO T, NISHIKAWA M, et al. Mineralogical variation of Sr-Nd isotopic and elemental compositions in loess and desert sand from the central Loess Plateau in China as a provenance tracer of wet and dry deposition in the northwestern Pacific[J]. Chemical Geology, 2004, 204(1/2): 45-62. (0)
[25]
RUBAN V, LÓPEZ-SÁNCHEZ J F, PARDO P, et al. Development of a harmonised phosphorus extraction procedure and certification of a sediment reference material[J]. Journal of Environmental Monitoring, 2001, 3(3): 121-125. (0)
[26]
MURPHY J R, RILEY J P. A modified single solution method for the determination of phosphate in natural waters[J]. Analytica Chimica Acta, 1962, 27(00): 31-36. (0)
[27]
申禹, 李玲. 天然水体中生物膜对磷的吸附动力学特征[J]. 环境科学学报, 2013, 33(04): 1023-1027.
SHEN Yu, LI Ling. Kinetic characteristics of phosphorus adsorption on surface coatings in natural water[J]. Acta Scientiae Circumstantiae, 2013, 33(4): 1023-1027. (0)
[28]
丁悌平, 高建飞, 石国钰, 等. 长江水中悬浮物含量与矿物和化学组成及其地质环境意义[J]. 地质学报, 2013, 87(5): 634-660.
DING Tiping, GAO Jianfei, SHI Guoyu, et al. The contents and mineral and chemical compositions of suspended particulate materials in the Yangtze River, and their geological and environmental implications[J]. Acta Geologica Sinica, 2013, 87(5): 634-660. (0)
[29]
SUTHERLAND R A. Comparison between non-residual Al, Co, Cu, Fe, Mn, Ni, Pb and Zn released by a three-step sequential extraction procedure and a dilute hydrochloric acid leach for soil and road deposited sediment[J]. Applied Geochemistry, 2002, 17(4): 353-365. DOI:10.1016/S0883-2927(01)00095-6 (0)
[30]
XIAO Yang, XIAO Lian, HAO Ke, et al. Characteristics of phosphorus adsorption by sediment mineral matrices with different particle sizes[J]. Water Science and Engineering, 2013, 6(3): 262-271. (0)
[31]
OSTROM M E. Separation of clay minerals from carbonate rocks by using acid[J]. Journal of Sedimentary Research, 1961(1): 123-129. (0)
[32]
陈明洪. 沉积物颗粒吸附磷的规律及微观形貌变化的研究[D]. 北京: 清华大学, 2008. (0)
[33]
YE H, CHEN F, SHENG Y, et al. Adsorption of phosphate from aqueous solution onto modified palygorskites[J]. Separation and Purification Technology, 2006, 50(3): 283-290. DOI:10.1016/j.seppur.2005.12.004 (0)
[34]
LI Y, LIU C, LUAN Z, et al. Phosphate removal from aqueous solutions using raw and activated red mud and fly ash[J]. Journal of Hazardous Materials, 2006, 137(1): 374-383. DOI:10.1016/j.jhazmat.2006.02.011 (0)
[35]
孙静, 王圣瑞, 曾清如, 等. 洱海表层沉积物有机磷形态分布特征及其影响因素[J]. 环境科学研究, 2011, 24(11): 1226-1232.
SUN Jing, WANG Shengrui, ZENG Qingru, et al. Distribution characteristics of organic phosphorus fractions and influencing factors in surface sediments of Lake Erhai[J]. Research of Environmental Sciences, 2011, 24(11): 1226-1232. (0)
[36]
何宗健, 刘文斌, 王圣瑞, 等. 洱海表层沉积物吸附磷特征[J]. 环境科学研究, 2011, 24(11): 1242-1248.
HE Zongjian, LIU Wenbin, WANG Shengrui, et al. Phosphate adsorption characteristics on the surface sediments of Erhai Lake[J]. Research of Environmental Sciences, 2011, 24(11): 1242-1248. (0)
[37]
蔡进功, 徐金鲤, 杨守业, 等. 泥质沉积物颗粒分级及其有机质富集的差异性[J]. 高校地质学报, 2006, 12(2): 234-241.
CAI Jingong, XU Jinli, YANG Shouye, et al. The fractionation of an argillaceous sediment and difference in organic matter enrichment in different fractions[J]. Geological Journal of China Universities, 2006, 12(2): 234-241. (0)
[38]
王彦, 张进忠, 王振华, 等. 四川盆地丘陵区农田土壤对磷的吸附与解吸特征[J]. 农业环境科学学报, 2011, 30(10): 2068-2074.
WANG Yan, ZHANG Jinzhong, WANG Zhenhua, et al. Adsorption and desorption characteristics of phosphorus on cropland soils in the hilly area of Sichuan Basin, China[J]. Journal of Agro-Environment Science, 2011, 30(10): 2068-2074. (0)
[39]
杨宏伟, 郭博书, 邰朝鲁门, 等. 黄河入河沙漠颗粒物对磷酸盐的吸附特征[J]. 环境科学, 2010, 31(8): 1890-1896.
YANG Hongwei, GUO Boshu, TAI Chaolumen, et al. Phosphate adsorption characteristics on the desert particulates of inflow Yellow River[J]. Environment Science, 2010, 31(8): 1890-1896. (0)