环境科学研究  2017, Vol. 30 Issue (4): 607-614  DOI: 10.13198/j.issn.1001-6929.2017.01.67

引用本文  

梁美娜, 王敦球, 朱义年, 等. 羟基磷灰石/蔗渣炭复合吸附剂的制备及其对As(Ⅴ)的吸附机理[J]. 环境科学研究, 2017, 30(4): 607-614.
LIANG Meina, WANG Dunqiu, ZHU Yinian, et al. Preparation of Hydroxylapatite/Bagasse Biochar Composite Adsorbent and Its Adsorption Mechanism of As(V) from Aqueous Solution[J]. Research of Environmental Sciences, 2017, 30(4): 607-614.

基金项目

国家自然科学基金项目(21367010,51638006)

责任作者

王敦球(1969-), 男, 江苏徐州人, 教授, 博士, 博导, 主要从事水污染控制、固体废弃物资源化利用研究, wangdunqiu@sohu.com

作者简介

梁美娜(1974-), 女, 广西环江人, 研究员, 硕士, 主要从事环境化学、环境功能材料的制备及应用研究, liangmeinaa@163.com

文章历史

收稿日期:2016-08-29
修订日期:2016-11-04
羟基磷灰石/蔗渣炭复合吸附剂的制备及其对As(Ⅴ)的吸附机理
梁美娜1,2,3 , 王敦球1,2,3 , 朱义年1,2,3 , 肖瑜2,3 , 朱宗强2,3 , 唐沈2,3     
1. 广西大学轻工与食品工程学院, 广西 南宁 530004;
2. 桂林理工大学环境科学与工程学院, 广西 桂林 541004;
3. 广西岩溶地区水污染控制与用水安全保障协同创新中心, 广西 桂林 541004
摘要:以甘蔗渣为原料,采用水热合成法制备羟基磷灰石/蔗渣炭复合吸附剂--HBA,通过静态吸附试验研究HBA对As(Ⅴ)的吸附特性,并采用红外光谱和X射线光电子能谱对吸附前后的HBA进行表征,探讨其吸附As(Ⅴ)的机理.结果表明:HBA的比表面积为89.52 m2/g,pHzpc(零点电荷)=7.2,HBA上的羟基磷灰石的分子式为Ca10(PO46(OH)2.HBA吸附As(Ⅴ)的效果最佳pH为5.0~9.0.Langmuir等温吸附模型适合拟合HBA对As(V)的吸附等温线,25℃时Langmuir最大吸附量为6.76 mg/g,是蔗渣炭对As(Ⅴ)最大吸附量的20多倍.红外光谱分析表明,HBA含有的=C=O、─OH、─COOH等含氧官能团,可为化学吸附提供充足的吸附位点和提高HBA的吸附能力.XPS分析表明,HBA表面的含氧官能团[如羧基(─O─C=O,532.2 eV)、羟基(─OH,530.6 eV)]参与了吸附反应,羟基磷灰石能提高HBA吸附As(Ⅴ)的能力,被吸附到HBA表面上的As主要以AsO43-和HAsO42-形态存在.
关键词羟基磷灰石    蔗渣炭        吸附    机理    
Preparation of Hydroxylapatite/Bagasse Biochar Composite Adsorbent and Its Adsorption Mechanism of As(V) from Aqueous Solution
LIANG Meina1,2,3 , WANG Dunqiu1,2,3 , ZHU Yinian1,2,3 , XIAO Yu2,3 , ZHU Zhongqiang2,3 , TANG Shen2,3     
1. College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China;
2. College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China;
3. Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
Abstract: Hydroxylapatite/bagasse biochar composite adsorbent(HBA) was prepared from sugarcane bagasse by using the hydrothermal synthesis method.The adsorption capacity for As(V) on HBA was measured through a series of batch adsorption experiments.The adsorption mechanism of As(V) from aqueous solution onto HBA was investigated using Fourier transform infrared spectroscopy(FTIR) and X-ray photoelectron spectroscopy(XPS).The results showed that the specific surface area of HBA was 89.52 m2/g, and the point of zero charge values of HBA was 7.2.The molecular formula of hydroxylapatite in HBA was Ca10(PO4) 6(OH) 2.The pH range for the optimal As(V) adsorption was between 5.0 and 9.0.The As(V) adsorption isotherm could be well fitted with the Langmuir model.The maximum As(V) adsorption capacity for HBA was 6.76 mg/g at 25℃, which is 23 times that of the bagasse biochar.FTIR analysis indicated that oxygen-containing functional groups presented abundantly on the external and internal surfaces of HBA, which provided numerous chemical sorption sites and thereby increased the adsorption capacity of HBA.XPS analysis showed that the oxygen-containing functional groups, carboxyl oxygen[─O─C=O, 532.2 eV] and hydroxyl[-OH, 530.6 eV], were involved in adsorption.Hydroxylapatite in HBA played the key role in the As(V) adsorption process.The As(V) adsorbed on the HBA surface existed mainly as AsO43- and HAsO42-.
Keywords: hydroxylapatite    bagasse biochar    arsenic (V)    adsorption    mechanism    

As化合物是环境中常见的污染物,由于As的毒性和其致癌性[1-2],环境中As浓度的升高严重危害人类健康.因此,WHO(世界卫生组织)1993年修订的饮用水水质标准中将ρ(As)的允许值从50 μg/L降至10 μg/L.As是导致RNA和DNA突变而引发癌症的关键因素,而且As污染还导致新生儿体质量下降、先天畸形、死亡率上升等现象[3-5].因此,人们开发了许多种技术来降低水环境中的ρ(As),包括化学沉淀、离子交换、吸附、反渗透等.常用作除As吸附剂的物质有铁金属、三价铁离子及其氢氧化物、锰和铝的氧化物、磷灰石和各种粉煤灰等[6-9].

近年来,在实验室研究和中试中寻找、使用低成本除As吸附剂是一种发展趋势,很多研究者证实用化学改性原生生物质能有效去除水溶液中Pb和As等重金属[10-13].羟基磷灰石的分子式为Ca10(PO4)6(OH)2,是六方晶系[14],这种晶体特征使不同类型的重金属能够取代其中Ca的位置,使其具有良好的离子吸附和交换特性,已被证实能吸附水溶液中的Cu2+、Cd2+、Pb2+和As(Ⅴ)等离子[15-18]以及各类有机化合物[19].Islam等[20]研究了碳酸纤维素羟基磷灰石复合纳米材料对水中As的吸附,他们用氢氧化钠和尿素混合溶液溶解纤维素微晶体,制备纤维素溶液,然后将CaCl2和NaH2PO4加到纤维素溶液中,再用微波加热到90℃,之后过滤,再用蒸馏水和乙醇洗涤到中性,在60 ℃下干燥即得产品.Czerniczyniec等[21]用XRD(X射线衍射)、SEM(扫描电镜)和EDA(能谱分析)研究了生物羟基磷灰石的特性,证实生物羟基磷灰石对As具有很强的吸附性能.羟基磷灰石的这些吸附特点是与其表面特征、表面官能团、表面酸碱性、表面电荷等有关,研究[22]发现,羟基磷灰石表面的P—OH键可作为吸附点位.

蔗渣是制糖工业的重要副产物,生产1 t蔗糖约产生2 t甘蔗渣.其主要成分是纤维素、半纤维素及木质素,可以作为制备生物质活性炭的原料.用甘蔗渣制备活性炭并用于去除水中的Pb、Zn、Cu、P、As等研究均见报道[23-25].我国《2015年国民经济和社会发展统计公报》[26]显示,2015年全国糖料产量12 529×104 t.蔗糖产量约占糖料产量的90%,约产生22 552× 104 t甘蔗渣.目前,甘蔗渣资源化利用主要途径包括锅炉燃料燃烧发电、制浆造纸、生产人造板、生产绿色环保餐具等.该研究采用羟基磷灰石化学改性甘蔗渣,制备羟基磷灰石/蔗渣炭复合吸附剂—HBA,提高蔗渣生物炭吸附As(Ⅴ)的能力,同时研究了HBA对As(Ⅴ)的吸附性能,探讨吸附As(Ⅴ)的机理,以期为综合资源化利用甘蔗渣开发新的途径、方法和提供理论依据.

1 材料与方法 1.1 试验材料与仪器

甘蔗取自广西贵港某糖厂未除髓的甘蔗渣,经蒸馏水清洗,80 ℃烘干,粉碎过20目(0.84 mm)标准筛,置于干燥器中待用.

Ca(CH3COO)2、NaOH、HCl、NH3 ·H2O、Na3AsO4 ·12H2O为分析纯,CH3COONH4、NH4H2PO4为优级纯,试验用水为超纯水.As标准溶液(国家钢铁材料测试中心钢铁研究院),介质为10%的HCl,ρ(As)为1 mg/mL,使用时用超纯水逐级稀释.

FS-20型原子荧光形态分析仪(北京吉天仪器有限公司,中国);EA2400II型元素分析仪(铂金埃尔默仪器公司,美国);NEXUS470型傅里叶红外光谱仪(ThermoNicolet公司,美国);S-4800型扫描电子显微镜(日本高新技术公司/英国牛津公司生产);ESCALAB 250Xi型X射线光电子能谱(热电公司,美国);OVA Station A型比表面积分析仪(康塔仪器公司,美国);X′Pert PRO X射线衍射仪(荷兰帕纳科公司,美国).

1.2 HBA的制备与表征

于2 000 mL的烧杯中加入0.2 L/min Ca(CH3COO)2溶液250 mL,再加入4.4 L/min CH3COONH4缓冲溶液250 mL,混合均匀,加入50 g甘蔗渣,电动搅拌后,用超声波超声振荡30 min,静置24 h,在快速搅拌下向烧杯中加入0.06 L/min NH4H2PO4溶液500 mL,缓慢滴加10%(V/V)的氨水溶液,调节反应终点的pH至7.5,室温下继续搅拌30 min.然后放在100 ℃恒温水浴锅中水浴反应48 h.自然冷却、过滤.固相沉淀物经过超纯水洗涤2遍后,用无水乙醇洗涤1遍,过滤,滤饼置于瓷盘中放置于红外干燥箱中在70 ℃条件下干燥16 h.将干燥后的羟基磷灰石/蔗渣混合物放入马弗炉中,在500 ℃下,碳化4 h,自然冷却,研磨过100目(0.15 mm)筛,获得HBA,备用.

蔗渣生物炭的制备:将洗静、烘干后的甘蔗渣放入马弗炉中,在500 ℃下,碳化4 h,自然冷却,研磨过100目(0.15 mm)筛,获得蔗渣生物炭,备用.

采用SEM、XRD、FTIR(傅里叶红外光谱)和XPS(X射线电子能谱)对HBA表征.

1.3 吸附试验

称取一定质量的HBA于一系列100 mL的聚乙烯塑料离心管中,加入已用0.1 L/min NaOH或HNO3调节pH至试验设定值的50 mL含As(Ⅴ)溶液,盖好瓶盖,摇匀,用0.1 L/min NaOH或HNO3溶液继续调节溶液的pH到设定值.然后,将其置于恒温水浴振荡器中,以200 r/min转速振荡到设定吸附时间.取出后置于台式离心机中以4 000 r/min离心5 min,然后用0.45 μm滤膜针筒过滤器过滤,收集上清液到小聚乙烯塑瓶料中(开始时的2~3 mL弃去不用).用原子荧光光谱法测定滤液中的ρ〔As(Ⅴ)〕.吸附量采用质量平衡方程计算:

$ q = \left( {{C_0} - C} \right)V/W $ (1)

式中:q为吸附量,mg/g;C0为初始ρ〔As(Ⅴ)〕,mg/L;C为某一时刻溶液中的ρ〔As(Ⅴ)〕,mg/L;V为溶液体积,L;W为吸附剂质量,g.

其中,pH的影响试验中溶液初始pH为3.0~10.0,吸附时间影响试验的时间为20~840 min,吸附温度影响试验的温度为25~45 ℃.吸附等温线和吸附动力学试验中溶液初始pH均为7.0;吸附等温线试验,初始ρ〔As(Ⅴ)〕分别为0.5、1.0、2.0、3.0、4.0、5.0、6.0、8.0、10.0、12.0、15.0和20.0 mg/L;吸附动力学试验,初始ρ〔As(Ⅴ)〕为0.5和2.0 mg/L.

2 结果与讨论 2.1 HBA的表征

HBA的BET比表面积为89.52 m2/g,孔体积为29.26 cm3/g,其疏松的微孔结构使其具有较高的比表面积,有利于增大其与溶质的接触面积,提高其吸附能力.X射线衍射分析结果见图 1(a).与标准卡图 1(b)对照发现,HBA的大部分衍射峰与羟基磷灰石〔Ca10(PO4)6(OH)2〕的标准卡(JCPDF,No.00-09-0432) 吻合良好.另外,44.54°的衍射峰对应的是C(00-011-0646) 的衍射峰,这是甘蔗渣烧结后的炭化产物,这与后面XPS分析的结果相吻合,而且在衍射图谱的前段有一类似小土包的本底峰,表明有机炭晶体化程度小.

图 1 HBA的XRD图和羟基磷灰石的标准卡 Figure 1 XRD spectra of HBA and the JCPDF of hydroxylapatite

HBA和蔗渣生物炭的红外光谱如图 2所示.由图 2可见,HBA在波数为3 436、1 616、1 384、1 039、605和565 cm-1处有明显的吸收峰.3 436 cm-1处的吸收峰是—OH的伸缩振荡峰,1 616 cm-1处的吸收峰是C O双键的特征峰,1 384 cm-1处的吸收峰为COOH和酚基的弯曲振动[27],在波数为1 030、605和565 cm-1的吸收峰是PO43-四面体对称伸缩振动峰[16].蔗渣生物炭在波数为3 413、1 600和1 384 cm-1处有明显的吸收峰.表明,HBA内外表面具有大量的含氧官能团,可为化学吸附提供充足的吸附位点和提高HBA的吸附能力.

图 2 蔗渣生物炭和HBA的FTIR图谱 Figure 2 FTIR spectra of bagasse biochar and HBA

吸附剂表面的带电性质由其所带正负电荷的多少决定,pHzpc(零点电荷)是所带正负电荷相等时,即Zeta电位等于零时所对应的pH.Zeta电位与pH关系曲线如图 3所示.由图 3可知,蔗渣生物炭的pHzpc为4.4,HBA的pHzpc为7.2.可能是HBA含有羟基磷灰石,提高了HBA的pHzpc.

图 3 Zeta电位与pH关系曲线 Figure 3 Zeta potential of HBA as a function of pH
2.2 pH对吸附性能的影响

pH对HBA吸附As(Ⅴ)的影响见图 4.由图 4可见,当pH由3.0升至7.0时,As(Ⅴ)的去除率由98.9%增至99.8%,当pH由7.0升至10.0时,As(Ⅴ)的去除率由99.8%缓慢下降至99.4%.HBA去除As(Ⅴ)的较佳pH范围是5.0~9.0,As(Ⅴ)的去除率>99.6%,当pH=7.0时,As(Ⅴ)的去除率最大.溶液的pH是影响吸附剂吸附能力的重要参数,它影响吸附质在溶液中的存在形态和吸附剂表面电荷性质.As(Ⅴ)在水中主要以H3AsO4(pH < 2.0)、H2AsO4-和HAsO42-(2.0 < pH < 7.0),HAsO42-(pH> 7.0)[28]形态存在,羟基磷灰石的pHzpc为7.93[29],该研究测定HBA的pHzpc为7.2.当溶液pH < 7.2时,HBA表面带正电荷,溶液中的As(Ⅴ)主要以H2AsO4-为主,静电引力的作用较大,有利于As(Ⅴ)的吸附;当3.0 < pH < 5.0时,HBA对As(Ⅴ)的吸附量随着pH的升高而增大.根据As在水中的分配系数,c(H2AsO4-)随pH的升高而增大,虽然HBA表面电势下降,但表面静电引力的作用依然存在,有利于吸附.而当pH>7.2时,HBA表面带负电荷,随着pH的增加,HBA表面负电荷增大;此时溶液中主要为HAsO42-,负电性增强,导致静电排斥增加,As(Ⅴ)的去除率下降,这与文献[30-31]的研究结果一致.

注:温度为25 ℃,C0=2.0 mg/L. 图 4 pH对HBA吸附As(Ⅴ)的影响 Figure 4 Effect of pH on arsenic sorption onto HBA
2.3 吸附时间的影响

图 5可见,当初始ρ〔As(Ⅴ)〕为0.5和2.0 mg/L时,在20 min内,As(Ⅴ)的去除率分别达到97.4%和88.1%,平均吸附速率为0.012 2和0.044 1 mg/(g ·min),吸附平衡时间分别为240和480 min.在不同初始ρ〔As(Ⅴ)〕下,吸附初始阶段吸附速率快的原因是吸附剂表面有丰富的吸附点位;随着吸附时间的延长,吸附速率下降的原因是吸附点位的减少,还有可能是As(Ⅴ)聚合于HBA吸附剂颗粒周围,可能会阻碍吸附质的迁移,吸附点位被填满,使As(Ⅴ)在吸附剂表面的扩散速度降低[32]所致.初始ρ〔As(Ⅴ)〕不同,吸附平衡时间不同,初始ρ〔As(Ⅴ)〕较低时会更快达到吸附平衡,究其原因,低ρ〔As(Ⅴ)〕时砷酸阴离子能通过静电引力在数min或数h内快速到达吸附剂的吸附点位,然后扩散至吸附剂颗粒或晶体微孔中,发生表面络合作用并使基团结构进行重组.高ρ〔As(Ⅴ)〕时,静电吸引和扩散过程缓慢,导致吸附平衡时间较长[33].

注:初始ρ〔As(Ⅴ)〕/(mg/L): 1—0.5;2—2.0. 图 5 吸附时间对HBA吸附As(Ⅴ)的影响 Figure 5 Effect of contact time on arsenic adsorption onto HBA
2.4 吸附等温线

图 6可见,在25、35、45 ℃下,随着初始ρ〔As(Ⅴ)〕的增加,As(Ⅴ)的吸附量增大,在Ce(吸附平衡时ρ〔As(Ⅴ)〕) < 1.0 mg/L时,3种温度下的吸附量基本一样;当Ce>1.0 mg/L时,吸附温度对吸附量的影响开始增大,随着吸附温度的升高,HBA对As(Ⅴ)的吸附量有微少的增加.其他一些研究者的研究[20, 34-35]亦表明,随着温度的升高,纳米纤维素/羟基磷灰石复合吸附剂、负载锰吸附剂、羟基铁化合物、氢氧化铁和红土对As(Ⅴ)的去除率和吸附量增大.

图 6 HBA对As(Ⅴ)的吸附等温线 Figure 6 Adsorption isotherms of arsenic onto HBA

采用Langmuir等温吸附模型〔见式(2)〕和Freundlich等温吸附模型〔见式(3)〕对吸附等温线进行拟合.

$ {C_{\rm{e}}}/{q_{\rm{e}}} = 1/\left( {{q_{\max }} \cdot {K_{\rm{L}}}} \right) + {C_{\rm{e}}}/{q_{\max }} $ (2)
$ \ln \;{q_{\rm{e}}} = \ln \;{K_{\rm{F}}} + \left( {\ln \;{C_{\rm{e}}}} \right)/n $ (3)

式中:qmax为最大吸附量,mg/g;KL是与吸附自由能有关的常数,L/mg;qe为吸附质的平衡吸附量,mg/g;KF为Freundlich常数,mg/(L1/n·g),表明吸附容量的大小;1/n表示吸附强度的大小,是表示不均匀性的因素.以Ce/qeCe做图,由直线的斜率和截距计算出qmaxKL;以ln qe对ln Ce做图,由直线的斜率和截距计算出1/nKF.吸附模型参数见表 1.

表 1 Langmuir和Freundlich等温吸附模型参数 Table 1 Parameters of Langmuir isotherm model and Freundlich isotherm model

表 1可见,在25、35和45 ℃下,Langmuir等温吸附模型拟合的相关系数(R2)分别为0.996、0.994和0.989,表明Langmuir等温吸附模型适合拟合HBA对As(Ⅴ)的吸附行为,HBA对As(Ⅴ)的吸附是均匀吸附,在吸附剂表面上的每个分子具有相同的吸附活化能[36]qmax分别为6.76、6.90、6.99 mg/g,约为蔗渣生物炭的23倍,表明羟基磷灰石能提高HBA对As(Ⅴ)的吸附能力.1/n在0.406~0.440之间,表明HBA对As(Ⅴ)具有较强的吸附能力[37].

纳米氧化铁/菠萝皮活性炭[38]、载铁活性炭[39]、骨炭[40]、碳酸纤维素羟基磷灰石[20]、纳米羟基磷灰石[41]对As(Ⅴ)的最大吸附量分别为1.80、3.01、4.69、10.27和526 mg/g,可见HBA对As(Ⅴ)有较好的吸附能力,其可能原因是HBA吸附As的过程主要包括表面吸附和离子交换.首先是As(Ⅴ)在HBA上有吸附,然后是As(Ⅴ)与HBA上的羟基磷灰石的Ca2+发生离子交换,其反应式如下[42]

$ \begin{array}{l} {\rm{C}}{{\rm{a}}_{{\rm{10}}}}{{\rm{(P}}{{\rm{O}}_{\rm{4}}}{\rm{)}}_{\rm{6}}}{{\rm{(OH)}}_{\rm{2}}}{\rm{ + }}x{\rm{A}}{{\rm{s}}^{{\rm{5 + }}}} \to x{\rm{C}}{{\rm{a}}^{{\rm{2 + }}}} + {\rm{C}}{{\rm{a}}_{{\rm{10}}}}{{\rm{ - }}_x}{\rm{As(P}}{{\rm{O}}_{\rm{4}}}{{\rm{)}}_{\rm{6}}}{{\rm{(OH)}}_{\rm{2}}} \end{array} $ (4)
2.5 XPS分析吸附As(Ⅴ)的机理

根据羟基磷灰石溶度积和温度的关系式[43]

$ {\rm{lg}}\;{K_{\rm{s}}}{\rm{ = - 8219}}.{\rm{41/}}T{\rm{ - 0}}.{\rm{098}}\;{\rm{25}}T{\rm{ - 1}}.{\rm{665}}\;{\rm{7}} $

式中:Ks为羟基磷灰石的溶度积,25 ℃时Ks为3.695× 10-59T为绝对温度,K.

可计算出25 ℃下,溶液pH为7.0时,羟基磷灰石在水溶液中的溶解度低于0.15 mg/L,因此,在吸附过程中溶解作用很少.因此用于XPS分析的吸附后样品,其吸附试验条件为pH=7.0,温度=25 ℃.分析结果见图 7.

图中的小图是横坐标50~35 eV处的放大图. 图 7 注:吸附As(Ⅴ)前后的XPS分析 Figure 7 XPS result of the HBA before and after adsorption As(Ⅴ)

图 7(a)(b)可见,吸附As(Ⅴ)前后的HBA在结合能为531.08、346.54、283.98和133.12 eV处分别有O 1 s、Ca 2p、C 1s和P 2p的峰,但只有吸附As(Ⅴ)后的HBA在结合能44.32 eV处有As 3d峰.Ca 2p和P 2p的结合能分别由吸附前的346.9 eV和133.1 eV降低到吸附后的346.5 eV和132.9 eV,表明HBA上的Ca和P参与了吸附反应.

利用XPS PEAK软件对吸附As(Ⅴ)前后的HBA的O 1s结合能峰值位置做分峰拟合,拟合结果如图 8所示.由图 8(a)(b)可见,HBA的O 1s的结合能由吸附前的531.8 eV升高到吸附后的532.0 eV,O—C的结合能由吸附前的532.2 eV升高到吸附后的533.4 eV.表明,HBA表面的含氧官能团如羧基氧(—O—C=O,532.2 eV)、羟基(—OH,530.6 eV)参与了吸附反应.在531.3 eV处出现的峰是羟基连着金属键(M—OH)[44].吸附As(Ⅴ)后,531.3 eV处出现的M—OH峰面积减少,表明复合吸附剂表面羟基参与了吸附反应[45].Ca 2p结合能峰值位置由吸附前的346.9 eV降低到346.5 eV,这可能是Ca—OH官能团结合HAsO42-阴离子,并产生砷酸氢钙和羟基磷灰石的共沉淀作用所致.

图 8 吸附As(Ⅴ)前后O 1s的分峰拟合图 Figure 8 Sub-peak fitted spectra of O 1s of HBA before and after As(Ⅴ)adsorption

吸附As(Ⅴ)后的HBA上As的分峰拟合结果如图 9所示.由图 9可见,在44.3、45.3和46.2 eV处有3种不同形态的As峰,峰面积的大小依次减少.表明被吸附到HBA上的As(Ⅴ)主要以AsO43-和HAsO42-形态存在.究其原因,主要是在pH=7.0的条件下,溶液中的As(Ⅴ)主要以HAsO42-形态存在,另外,H2AsO4-与吸附剂形成表面络合物之后很快反应成HAsO42-[46].

图 9 HBA吸附As(Ⅴ)后As 3d分峰拟合 Figure 9 Sub-peak fitted spectra of As after HBA adsorption As(Ⅴ)
3 结论

a) HBA具有微孔结构,HBA上的羟基磷灰石是无定形态,其分子式为Ca10(PO4)6(OH)2,BET比表面积为89.52 m2/g,孔体积为29.26 cm3/g.零点电位pHzpc=7.2.HBA上有羟基和羧基.

b) HBA吸附As(Ⅴ)较佳的pH范围为5.0~9.0,最佳pH是7.0.当初始ρ〔As(Ⅴ)〕为0.5和2.0 mg/L时,达到吸附平衡的时间分别是240和480 min.Langmuir等温吸附模型适合拟合HBA对As(Ⅴ)的吸附等温线,25、35和45 ℃下相关系数分别为0.996、0.994和0.989,qmax分别为6.76、6.90、6.99 mg/g.

c) 红外光谱分析表明,HBA上的C O、—OH、—COOH等含氧官能团可为化学吸附提供充足的吸附位点和提高HBA的吸附能力.XPS分析表明HBA表面的含氧官能团〔如羧基(—O—C O,532.2 eV)、羟基(—OH,530.6 eV)〕参与了吸附过程,羟基磷灰石能提高蔗渣生物炭吸附As(V)的能力,被吸附到HBA表面的As(V)主要以AsO43-和HAsO42-形态存在.

参考文献
[1]
EBLIN K E, BOWEN M E, CROMEY D W, et al. Arsenite and monomethylarsonous acid generate oxidative stress response in human bladder cell culture[J]. Toxicology and Applied Pharmacology, 2006, 217(1): 7-14. DOI:10.1016/j.taap.2006.07.004 (0)
[2]
HUGHES M F. Arsenic toxicity and potential mechanisms of action[J]. Toxicology Letters, 2002, 133(1): 1-16. DOI:10.1016/S0378-4274(02)00084-X (0)
[3]
JAIN C K, ALI I. Arsenic:occurrence, toxicity and speciation techniques[J]. Water Research, 2000, 34(17): 4304-4312. DOI:10.1016/S0043-1354(00)00182-2 (0)
[4]
MONIQUE B, FRIMMEL F H. Arsenic-a review:Part Ⅰ:occurrence, toxicity, speciation, mobility[J]. ActaHydrochimica Et, Hydrobiologica, 2003, 31(1): 9-18. DOI:10.1002/aheh.200390025 (0)
[5]
REBECCA B S, RICHARD S C. Naturally occurring arsenic in sandstone aquifer water supply wells of northeastern Wisconsin[J]. Ground Water Monitoring and Remediation, 1999, 19(2): 114-121. DOI:10.1111/gwmr.1999.19.issue-2 (0)
[6]
CHMIELEWSKÁ E, SABOVÁ L, JESENÁK K. Study of adsorption phenomena ongoing onto clinoptilolite with the immobilized interfaces[J]. Journal of Thermal Analysis and Calorimetry, 2008, 92(2): 567-571. DOI:10.1007/s10973-006-8315-6 (0)
[7]
DAUS B, WENNRICH R, WEISS H. Sorption materials for arsenic removal from water:a comparative study[J]. Water Research, 2002, 38(12): 2948-2954. (0)
[8]
DEMARCO M J, SENGUPTA A K, JOHN E G. Arsenic removal using a polymeric/inorganic hybrid sorbent[J]. Water Research, 2003, 37(1): 164-176. DOI:10.1016/S0043-1354(02)00238-5 (0)
[9]
SONG S, LOPEZ-VALDIVIESO A, HERNANDEZ-CAMPOS D J, et al. Arsenic removal from high-arsenic water by enhanced coagulation with ferric ions and coarse calcite[J]. Water Research, 2006, 40(2): 364-372. DOI:10.1016/j.watres.2005.09.046 (0)
[10]
杨军, 张玉龙, 杨丹, 等. 稻秸对Pb2+的吸附特性[J]. 环境科学研究, 2012, 25(7): 815-819. (0)
[11]
BODDU V M, ABBURI K, TALBOTT J L, et al. Removal of arsenic(Ⅲ) and arsenic(V)from aqueous medium using chitosan-coated biosorbent[J]. Water Research, 2008, 42(3): 633-642. DOI:10.1016/j.watres.2007.08.014 (0)
[12]
MALAKOOTIAN M, NOURI J, HOSSAINI H. Removal of heavy metals from paint industry's wastewater using Leca as an available adsorbent[J]. International Journal of Environmental Science & Technology, 2009, 6(2): 183-190. (0)
[13]
RAHAMAN M S, BASU A, ISLAM M R. The removal of As(Ⅲ)and As(V)from aqueous solutions by waste materials[J]. Bioresource Technology, 2008, 99(8): 2815-2823. DOI:10.1016/j.biortech.2007.06.038 (0)
[14]
刘羽, 彭明生. 磷灰石在废水治理中的应用[J]. 安全与环境学报, 2001, 1(1): 9-12. (0)
[15]
ZHENG Wei, LI Xiaoming, YANG Qi, et al. Adsorption of Cd(Ⅱ)and Cu(Ⅱ)from aqueous solution by carbonate hydroxylapatite derived from eggshell waste[J]. Journal of Hazardous Materials, 2007, 147(1): 534-539. (0)
[16]
CORAMI A, MIGNARDI S, FERRINI V. Cadmium removal from single and multi-metal(Cd+Pb+Zn+Cu)solutions by sorption on hydroxylapatite[J]. Journal of Colloid and Interface Science, 2008, 317(2): 402-408. DOI:10.1016/j.jcis.2007.09.075 (0)
[17]
WANG Y J, CHEN J H, CUI Y X, et al. Effects of low-molecular-weight organic acids on Cu(Ⅱ)adsorption onto hydroxylapatite nanoparticles[J]. Journal of Hazardous Materials, 2009, 162(2/3): 1135-1140. (0)
[18]
MIRHOSSEINI M, BIAZAR E, SAEB K. Removal of arsenic from drinking water by hydroxylapatite nanoparticles[J]. Current World Environment, 2014, 9(2): 331. DOI:10.12944/CWE (0)
[19]
SABURO S, YOSHIO T, KATSUHLRO I. Effect of phosphorylated organic compound on the adsorption of bovine serum albumin by hydroxylapatite[J]. Chemical and Pharmaceutical Bulletin, 1991, 39(9): 2183-2188. DOI:10.1248/cpb.39.2183 (0)
[20]
ISLAM M, MISHRA P C, PATEL R. Arsenate removal from aqueous solution by cellulose-carbonated hydroxylapatite nanocomposites[J]. Journal of Hazardous Materials, 2011, 189(3): 755-763. DOI:10.1016/j.jhazmat.2011.03.051 (0)
[21]
CZERNICZYNIEC M, FARÍAS S, MAGALLANES J, et al. Arsenic(V)adsorption onto biogenic hydroxylapatite:solution composition effects[J]. Water, Air, and Soil Pollution, 2007, 180(1/2/3/4): 75-82. (0)
[22]
TANAKA H, FUTAOKA M, HINO R, et al. Structure of synthetic calcium hydroxylapatite particles modified with pyrophosphoricacid[J]. Journal of Colloid and Interface Science, 2005, 283(2): 609-612. DOI:10.1016/j.jcis.2004.09.013 (0)
[23]
HONG H J, KIM H, BAEK K, et al. Removal of arsenic, chromate and ferricyanideby cationic surfactant modified powdered activated carbon[J]. Desalination, 2008, 223: 221-228. DOI:10.1016/j.desal.2007.01.210 (0)
[24]
GURGEL L V A, JÚNIOR O K, DE FREITAS GIL R P, et al. Adsorption of Cu(Ⅱ), Cd(Ⅱ), and Pb(Ⅱ)from aqueous single metal solutions by cellulose and mercerized cellulose chemically modified with succinic anhydride[J]. Bioresource Technology, 2008, 99: 3077-3083. DOI:10.1016/j.biortech.2007.05.072 (0)
[25]
BRANDÃO P C, SOUZA T C, FERREIRA C A, et al. Removal of petroleum hydrocarbons from aqueous solution using sugarcane bagasse as adsorbent[J]. Journal of Hazardous Materials, 2010, 175: 1106-1112. DOI:10.1016/j.jhazmat.2009.10.060 (0)
[26]
国家统计局. 中华人民共和国2015年国民经济和社会发展统计公报[EB/OL]. 北京: 中华人民共和国国家统计局, 2016[2016-02-29]. http://www.stats.gov.cn/tjsj/zxfb/201602/t20160229_1323991.html. (0)
[27]
XU Di, TAN Xiaoli, CHEN Changlun, et al. Removal of Pb(Ⅱ)from aqueous solution by oxidized multiwalled carbon nanotubes[J]. Journal of Hazardous Materials, 2008, 154: 407-416. DOI:10.1016/j.jhazmat.2007.10.059 (0)
[28]
VINK B W. Stability relations of antimony and arsenic compounds in the light of revised and extended Eh-pH diagrams[J]. Chemical Geology, 1996, 130(5): 21-30. (0)
[29]
TARASEVICH Y I, SHKUTKOVA E V, JANUSZ W. Sorption of ions of heavy metals from aqueous solutions on hydroxylapatite[J]. Journal of Water Chemistry and Technology, 2012, 34(3): 125-132. DOI:10.3103/S1063455X12030010 (0)
[30]
MAMINDY-PAJANY Y, HUREL C, MARMIER N, et al. Arsenic(V) adsorption from aqueous solution onto goethite, hematite, magnetite and zero-valent iron:effects of pH, concentration and reversibility[J]. Desalination, 2011, 281: 93-99. DOI:10.1016/j.desal.2011.07.046 (0)
[31]
QIAO J, JIANG Z, SUN B, et al. Arsenate and arsenite removal by FeCl3:effects of pH, As/Fe ratio, initial As concentration and co-existing solutes[J]. Separate and Purify Technology, 2012, 92: 106-114. DOI:10.1016/j.seppur.2012.03.023 (0)
[32]
MITTAL A, MITTAL J, MALVIYA A, et al. Removal and recovery of Chrysoidine Y from aqueous solutions by waste materials[J]. Journal of Colloid and Interface Science, 2012, 344(2): 497-507. (0)
[33]
刘海玲, 梁美娜, 朱义年. 复合铁铝氢氧化物对As(Ⅴ)的吸附作用[J]. 环境化学, 2006, 25(6): 743-747. (0)
[34]
TYROVOLA K, NIKOLAIDIS N P, VERANIS N, et al. Arsenic removal from geothermal waters with zero-valent iron:effect of temperature, phosphate and nitrate[J]. Water Research, 2006, 40(12): 2375-2386. DOI:10.1016/j.watres.2006.04.006 (0)
[35]
GENÇ-FUHRMAN H, TJELL J C, MCCONCHIE D. Adsorption of arsenic from water using activated neutralized red mud[J]. Environmental Science & Technology, 2004, 38(8): 2428-2434. (0)
[36]
CHANG Q, LIN W, YING W. Preparation of iron-impregnated granular activated carbon for arsenic removal from drinking water[J]. Journal of Hazardous Materials, 2010, 184(1): 515-522. (0)
[37]
CRINI G. Kinetic and equilibrium studies on the removal of cationic dyes from aqueous solution by adsorption onto a cyclodextrin-polymer[J]. Dyes and Pigments, 2008, 77(2): 415-426. DOI:10.1016/j.dyepig.2007.07.001 (0)
[38]
GUTIERREZ-MUÑIZ O E, GARCÍA-ROSALES G, ORDOÑEZ-REGIL E, et al. Synthesis, characterization and adsorptive properties of carbon with iron nanoparticles and iron carbide for the removal of As(V)from water[J]. Journal of Environmental Management, 2013, 114: 1-7. (0)
[39]
TUNA A Ö A, ÖZDEMIR E, ŞIMŞEK E B, et al. Removal of As(V) from aqueous solution by activated carbon-based hybrid adsorbents:Impact of experimental conditions[J]. Chemical Engineering Journal, 2013, 223: 116-128. DOI:10.1016/j.cej.2013.02.096 (0)
[40]
陈云嫩, 柴立元, 舒余德. 骨炭去除水中As(V)的试验研究[J]. 中南大学学报(自然科学版), 2008, 39(2): 279-283. (0)
[41]
MAHSA M, ESMAEIL B, KEIVAN S. Removal of Arsenic from Drinking Water by Hydroxylapatite Nanoparticles[J]. Current World Environment, 2014, 9(2): 331-338. DOI:10.12944/CWE (0)
[42]
MA Q Y, TRAINA S J, LOGAN T J, et al. Effect of aqueous Al, Cd, Cu, Fe(Ⅱ), Ni, and Zn on Pb(Ⅱ)immobilization by hydroxylapatite[J]. Environmental Science Technology, 1994, 28: 1219-1228. DOI:10.1021/es00056a007 (0)
[43]
ELLIOT J C. Structure and chemistry of apatite and other calcium orthophosphates[M]. Amsterdam: Elsevier Science Publishers, 1994, 157. (0)
[44]
REN Y M, YAN N, JING F, et al. Adsorption mechanism of copper and lead ions onto graphenenanosheet/δ-MnO2[J]. Materials Chemistry and Physics, 2012, 136(2): 538-544. (0)
[45]
KOCABAŞ-ATAKLI Z Ö, YUDA Y. Synthesis and characterization of anatase nanoadsorbent and application in removal of lead, copper and arsenic from water[J]. Chemical Engineering Journal, 2013, 225: 625-635. DOI:10.1016/j.cej.2013.03.106 (0)
[46]
ZHANG S J, LI X Y, CHEN J P. An XPS study for mechanisms of arsenate adsorption onto a magnetite-doped activated carbon fiber[J]. Journal of Colloid and Interface Science, 2010, 343(1): 232-238. DOI:10.1016/j.jcis.2009.11.001 (0)