环境科学研究  2017, Vol. 30 Issue (5): 799-808  DOI: 10.13198/j.issn.1001-6929.2017.01.88

引用本文  

杨智, 陈吉祥, 周永涛, 等. 玉门油田污染荒漠土壤石油降解菌多样性[J]. 环境科学研究, 2017, 30(5): 799-808.
YANG Zhi, CHEN Jixiang, ZHOU Yongtao, et al. Diversity of Oil-Degrading Bacteria Isolated from Oil-Contaminated Desert Soil of Yumen Oilfield[J]. Research of Environmental Sciences, 2017, 30(5): 799-808.

基金项目

国家自然科学基金项目(31272694);中国石油天然气股份有限公司天然气与管道分公司科研项目(2014D-4610-0501)

责任作者

陈吉祥(1963-), 男, 甘肃武山人, 教授, 博士, 博导, 主要从事环境生物技术研究, betcen@163.com

作者简介

杨智(1987-), 男, 陕西渭南人, yangzhi0727@126.com

文章历史

收稿日期:2016-09-23
修订日期:2016-12-27
玉门油田污染荒漠土壤石油降解菌多样性
杨智1 , 陈吉祥2 , 周永涛3 , 张彦3 , 李彦林1 , 王永刚1 , 周敏2     
1. 兰州理工大学能源与动力工程学院, 甘肃 兰州 730050;
2. 兰州理工大学石油化工学院, 甘肃 兰州 730050;
3. 中石油北京天然气管道有限公司, 北京 100101
摘要:为探索石油污染荒漠土壤石油降解微生物多样性、筛选高效石油降解菌,采用涂布平板法从石油污染荒漠土壤分离具有石油降解能力细菌,采用细菌形态观察和16S rRNA基因序列分析其多样性,并设计特异性引物,对分离细菌降解相关基因进行检测.结果表明,分离的37株细菌分别属于放线菌纲(Actinobacteria)、γ变形菌纲(Gammaproteobacteria)、β变形菌纲(Betaproteobacteria)、芽孢杆菌纲(Bacilli)和α变形菌纲(Alphaproteobacteria),分别占35.14%、32.43%、13.51%、13.51%、5.41%,归属于21个属的34个种类.优势菌属为假单胞菌属(Pseudomonas)、红球菌属(Rhodococcus)、微球菌属(Micrococcus)、寡养单胞菌属(Stenotrophomonas)、无色杆菌属(Achromobacter)和葡萄球菌属(Staphylococcus),占总数的51.35%,其中有36株细菌能以石油为唯一碳源稳定生长,对原油有明显的降解能力.在石油质量浓度为1 500 mg/L的基础培养基中,菌株YM43在培养7 d后对石油的降解率达55.47%,另有8株细菌的降解率不低于30.55%,11株细菌的降解率介于10.05%~28.37%,18株细菌的降解率不高于8.05%. PCR检测表明,有25株细菌含有烷烃单加氧酶基因,6株含芳烃双加氧酶基因,6株含联苯双加氧酶基因,4株含萘双加氧酶基因,3株含甲苯双加氧酶基因,2株含邻苯二酚双加氧酶基因.研究显示,石油污染荒漠土壤中可培养细菌具有高度多样性,分离的菌株有较强的石油降解能力,其降解功能与所存在的降解基因有关.
关键词荒漠土壤    石油降解菌    16S rRNA    多样性    降解基因    
Diversity of Oil-Degrading Bacteria Isolated from Oil-Contaminated Desert Soil of Yumen Oilfield
YANG Zhi1 , CHEN Jixiang2 , ZHOU Yongtao3 , ZHANG Yan3 , LI Yanlin1 , WANG Yonggang1 , ZHOU Min2     
1. College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China;
2. School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China;
3. Petro China Beijing Gas Pipeline Co. Ltd., Beijing 100101, China
Abstract: Microbial resources are rich in soil environments. The most potential bacteria for oil degradation were isolated from areas contaminated by oil. Biodegradation by microorganisms is more favorable than chemical treatment for dealing with oil pollution. In order to explore the diversity of the degrading microorganisms of oil-contaminated desert soil and screen the efficient oil-degrading bacteria, the spread plate method was used to isolate the oil-degrading bacteria. Bacterial morphology and 16S rRNA gene sequence analysis were used to identify the isolates. The results indicated that the 37 isolated bacterial strains belonged to 21 genera and 34 species belonging to Actinobacteria (35.14%), Gammaproteobacteria (32.43%), Betaproteobacteria (13.51%), Bacilli (13.51%) and Alphaproteobacteria (5.41%). The six predominant bacterial genera were found to be Pseudomonas, Rhodococcus, Micrococcus, Stenotrophomonas, Achromobacte and Staphylococcus, which accounted for 51.35% of the total isolated strains. Further experiments revealed that 36 strains demonstrated good adaptability to crude oil and grew well in medium using crude oil as the sole carbon and energy source. After being cultured for seven days in medium with an oil concentration of 1500 mg/L, the oil-degrading rates of eight strains were not less than 30.55%. The rates of 11 strains were measured to be between 10.05% and 28.37%, whereas the rates of 18 strains were not more than 8.05%. The highest rate was obtained by stain YM43. The PCR detection results showed that 25 strains of the isolated bacteria contained alkane monooxygenase genes, six strains had aromatic dioxygenase genes, six strains existed biphenyl dioxygenase genes, four strains contained naphthalene dioxygenase genes, while three strains contained toluene dioxygenase genes. Catechol dioxygenase genes were detected in two strains. The conclusions illustrate that a high diversity of culturable oil-degrading bacteria existed in the oil-contaminated desert soil, and the separated strains showed efficient oil degradation, which might be related with the hydrocarbon metabolism genes.
Keywords: desert soil    oil-degrading bacteria    16S rRNA    diversity    degrading genes    

土壤环境存在着丰富的微生物资源,也是石油降解微生物重要来源之一.石油污染导致土壤理化性质改变,同时也导致土壤微生物群落结构及多样性发生改变[1-2].不同污染土壤环境来源的微生物有一定差异,王新新等[3]从石油污染盐碱土壤的翅碱蓬根周围分离到8株细菌,分别属于戈登氏菌属(Gordonia)、无色杆菌属(Achromobacter)、迪茨菌属(Dietzia)、芽孢杆菌属(Bacillus)和假单胞菌属(Pseudomonas),16S rRNA基因克隆文库分析发现优势菌包括海杆菌属(Marinobacter)、食烷菌属(Alcanivorax)和假单胞菌属. Saadoun[4]从柴油污染土壤里分离石油降解菌包括假单胞菌属、不动杆菌属(Acinetobacter)、芽孢杆菌属和放线菌属(Actinomyces). Al-Saleh等[5]从科威特海岸沿线分离出272株石油降解菌,主要为假单胞菌属,芽孢杆菌属,葡萄球菌属(Staphylococcus),不动杆菌属,考克氏菌属(Kocuria)和微球菌属(Micrococcus).吴常亮等[6]用传统分离培养及PCR-DGGE技术研究了印度洋表层海水石油降解细菌多样性,共得到29个属51株不同细菌,主要包括α亚群和γ亚群,其中食烷菌属占18%,新鞘氨醇杆菌属(Novosphingobium)占10%,海杆菌属占6%,海链藻属(Thalassospira)占6%,首次发现有降解能力的SinomonasKnoelliaMesoflavibacter.信艳娟等[7]对大连湾海水、海泥和海绵样品采集分离筛选50株原油降解菌,形态观察和16S rRNA基因分析表明属于22属,其中6株是潜在新菌.韩平等[8]对胜利油田滩涂区土壤石油降解菌进行了筛选和鉴定,利用PCR-DGGE技术分析菌群多样性,优势菌群主要为γ变形菌纲,其次为α变形菌纲(Alphaproteobacteria)、ε变形菌纲(Epsilonproteobacteria)、放线菌纲(Actinobacteria)和黄杆菌纲(Flavobacteria),属于盐单胞菌属(Halomonas)、食烷菌属和海杆菌属,未培养优势菌SulfurovumGillisiaArcobacter.

我国西部土壤荒漠化对当地生态环境影响较大,研究荒漠土壤微生物多样性,分离高效石油降解菌株,对加强荒漠区石油污染环境生态恢复意义重大.该研究采用涂布平板法对西部石油污染荒漠土壤可培养细菌进行分离,经过细菌形态学及16S rRNA基因系统发育分析,研究可培养细菌群落结构和多样性,分析菌株的石油利用及降解能力,分析分离菌株石油降解相关基因多样性,以期为荒漠区石油污染土壤的生物修复提供理论基础及菌种资源.

1 材料与方法 1.1 试剂及仪器

TaqDNA聚合酶、Ezup柱式细菌基因组DNA抽提试剂盒(上海生工生物工程股份有限公司),GelRed核酸染料(北京优尼康生物科技有限公司),dNTP、Agarose Regular(TaKaRa Biotechnology),其他试剂为国产和进口分析纯.

IS-RDH2恒温振荡器(美国精骐有限公司);Neofuge 15R台式高速冷冻离心机(上海力申科学仪器有限公司);TC-96/G/H基因扩增仪(杭州博日科技有限公司);Tanon-3500凝胶图像处理系统(上海天能科技有限公司);Oil460红外分光测油仪(北京华夏科创仪器股份有限公司).

1.2 样品及培养基

石油污染土壤样品来源于甘肃玉门油田,取样深度为10 cm左右,土壤样品用无菌袋密闭保存.

基础培养基:NH4NO3 3 g,K2HPO4 1.5 g,KH2PO4 1.5 g,NaC1 0.5 g,MgSO4 ·7H2O 0.1 g,CaCl2 0.01 g,FeC12 0.01 g,蒸馏水1 L,pH为7.0.

富集培养基:基础培养基+石油.

1.3 石油降解菌富集和分离

称取10 g石油污染土样加到装有100 mL无菌水的250 mL锥形瓶中,于30 ℃,150 r/min条件下恒温振荡3~4 h,使土样中微生物均匀分散于水中,静置30 min,取上述混合液以不同石油浓度培养液进行驯化:吸取1 mL种子液于100 mL石油浓度为500 mg/L的培养液中,30 ℃、150 r/min恒温振荡培养3 d,吸取1 mL上述培养液于100 mL较高石油浓度培养液中,培养3 d,如此反复,石油浓度由500 mg/L逐渐增加为1 000、2 000、3 000 mg/L,取末次驯化培养液,稀释10、102、103、104倍,吸取200 μL涂布于LB培养基,30 ℃恒温培养,选择不同菌落形态的优势菌,在LB平板上划线分离,纯化后再筛选具有降解性能的菌株,-80 ℃下保藏.

1.4 细菌16S rRNA基因序列测定及系统进化分析

用Ezup柱式细菌基因组DNA抽提试剂盒提取细菌总DNA,采用16S rRNA基因通用引物(27F:5′-AGA GTT TGA TCC TGC TCA G-3′;1492R:5′-GGT TAC CTT GTT ACG ACT T-3′)PCR扩增目的片段. PCR反应体系:10× Buffer 5 μL、MgCl2 (25 mmol/L) 3 μL、dNTP (2.5 mmol/L) 1.5 μL、DNA模版1 μL、引物27F (50 μmol/L) 0.25 μL、引物1492R (50 μmol/L) 0.25 μL和TapDNA聚合酶1 μL,加无菌水补至50 μL.反应循环参数如下:94 ℃预变性5 min;94 ℃变性50 s,56 ℃退火1 min,72 ℃延伸2 min,30个循环;最后72 ℃延伸10 min. PCR产物送至上海生工生物工程公司测序,在EzTaxon基因库中进行模式种比对,通过CLASTAL X和MEGA 4软件构建系统发育树.

1.5 菌株生长特性及石油降解效果检测

挑取纯化的单菌落于LB液体培养基中,于30 ℃、150 r/min振荡培养24 h,8 000 r/min离心10 min,收集菌体,用生理盐水冲洗两遍,菌体重悬后以2%接种量分别接入以原油为唯一碳源和能源的基础培养基中,30 ℃,180 r/min培养3 d,采用稀释涂板法对比初始接入菌落数和培养3 d后细菌菌落数的变化,以此反映细菌在原油基础培养基中生长特性,继续培养7 d,用四氯化碳多次萃取培养液剩余原油,将萃取液分别用无水硫酸钠(300 ℃烘2 h)过滤除水,硅酸镁去除动植物油干扰,收集于25 mL刻度试管并定容至刻度,采用红外分光光度法测定培养基中残油含量,每组3个平行,并作对照(以不加菌的含油培养基为对照试验),石油降解率(η)的计算公式:

$ \eta = \left( {{C_1} - {C_2}} \right)/{C_1} \times 100\% $

式中:C1为空白样中石油浓度,mg/L;C2为采集样品中石油浓度,mg/L.

1.6 石油降解相关基因检测

根据常见微生物烷烃单加氧酶基因保守序列,合成3对特异性引物ALK1,ALK2和ALK3[9],并根据部分芳烃降解基因设计15对芳烃双加氧酶引物(见表 1),进行特异性PCR扩增. PCR反应体系:10×Buffer 5 μL、MgCl2 (25 mmol/L) 3 μL、dNTP (2.5 mmol/L) 1.5 μL、DNA模版1 μL、引物1 (50 μmol/L) 0.25 μL、引物2 (50 μmol/L) 0.25 μL和TapDNA聚合酶1 μL,加无菌水补至50 μL.反应循环参数如下:94 ℃预变性5 min;94 ℃变性1 min,56~62 ℃退火1 min,72 ℃延伸1 min,30个循环;72 ℃继续延伸10 min.

表 1 石油降解基因检测引物 Table 1 Primers for PCR detection of the oil-degrading related genes
2 结果与分析 2.1 石油降解菌分离鉴定及多样性分析

采用富集培养方法,以石油为唯一碳源和能源,从石油污染土壤分离到石油降解菌37株34种,其中,革兰氏阳性菌18株,革兰氏阴性菌19株. 16S rRNA基因序列分析表明其属于放线菌纲、γ变形菌纲、β变形菌纲、芽孢杆菌纲和α变形菌纲,其中放线菌纲细菌13株,占35.14%,γ变形菌纲12株,占32.43%,β变形菌纲5株,占13.51%,芽孢杆菌纲5株,占13.51%,α变形菌纲2株,占5.41%.主要包括假单胞菌属、红球菌属(Rhodococcus)、微球菌属、寡养单胞菌属(Stenotrophomonas)、无色杆菌属和葡萄球菌属.较多的还有短波单胞菌属(Brevundimonas)、短状杆菌属(Brachybacterium)和沙雷氏菌属(Serratia)(见表 2),其系统发育分析结果见图 1.

表 2 石油降解菌16S rRNA序列分析 Table 2 Analysis of 16S rRNA gene sequence of the oil-degrading bacteria

注:括号内为GenBank登录号;分支点上的数字为自展值百分比;线段0.02为核苷酸替换率. 图 1 石油降解菌系统发育树 Figure 1 Phylogenetic tree of the oil-degrading bacteria
2.2 降解菌在石油培养基中生长特性及降解率测定

菌株接种在以石油为唯一碳源和能源的培养基中,除Brevundimonas sp. YM35生长缓慢外,其余36株均能很好生长(见表 3),其中Achromobacter sp. YM01、Staphylococcus sp. YM02、Rhodococcus sp. YM05、Rhodococcus sp. YM09、Pseudomonas sp. YM15、Serratia sp. YM20、Pseudomonas sp. YM22、Brevundimonas sp. YM25、Stenotrophomonas sp. YM28、Enterobacter sp. YM29、Acinetobacter sp. YM32、Pseudomonas sp. YM36、Micrococcus sp. YM39、Rhodococcus sp. YM43、Achromobacter sp. YM46等15株细菌生长快速.用红外分光法测定培养基中残余油量,对照组中残余石油量为1 234.62 mg/L,萃取率为82.31%,发现8株细菌培养7 d后的降解率不低于30.55%,其中Rhodococcus sp. YM43降解效果最好,降解率达55.47%,其次为Acinetobacter sp. YM32、Enterobacter sp. YM29、Rhodococcus sp. YM09、Micrococcus sp. YM39、Pseudomonas sp. YM15、Brevundimonas sp. YM25和Serratia sp. YM20,降解率分别为45.91%、39.80%、38.85%、35.75%、33.84%、30.98%和30.55%. 11株细菌降解率在10.05%~28.37%之间,18株细菌降解率不高于8.05%.

表 3 菌株在石油中的生长特性及降解能力 Table 3 The growth characteristics of oil-degrading bacteria in oil medium
2.3 石油降解相关基因检测

根据文献[9]所报道的主要石油降解菌烷烃单加氧酶基因通用引物,用PCR扩增对烷烃降解相关基因进行了检测发现,有25株细菌具有烷烃单加氧酶基因,见表 4图 2(a).其中,有14株革兰氏阳性菌,即Staphylococcus sp. YM02、Staphylococcus sp. YM03、Rhodococcus sp. YM05、Sanguibacter sp. YM07、Arthrobacter sp. YM08、Rhodococcus sp. YM09、Aerococcus sp. YM13、Staphylococcus sp. YM16、Microbacterium sp. YM38、Micrococcus sp. YM39、Cellulomonas sp. YM40、Rhodococcus sp. YM43、Brachybacterium sp. YM52、Brachybacterium sp. YM54;有11株革兰氏阴性菌,即Achromobacter sp. YM01、Stenotrophomonas sp. YM10、Pseudomonas sp. YM14、Pseudomonas sp. YM15、Providencia sp. YM18、Serratia sp. YM19、Serratia sp. YM20、Pseudomonas sp. YM22、Acinetobacter sp. YM32、Brevundimonas sp. YM35、Pseudomonas sp. YM36.

表 4 石油降解菌烷烃单加氧酶基因PCR检测 Table 4 PCR detection of the alkane monooxygenase genes of the oil-degrading bacteria

图 2 石油降解基因PCR检测琼脂糖凝胶电泳图 Figure 2 Electrophoresis of the oil-degrading genes of the oil-degrading bacteria

根据常见石油降解菌芳烃双加氧酶、联苯双加氧酶、甲苯双加氧酶、萘双加氧酶和邻苯二酚双加氧酶基因序列,设计特异性引物,PCR检测到菌株Rhodococcus sp. YM09、Pseudomonas sp. YM14、Pseudomonas sp. YM15、Acinetobacter sp. YM32、和Pseudomonas sp. YM36具有芳烃双加氧酶和联苯双加氧酶基因,Rhodococcus sp. YM09、Pseudomonas sp. YM14、Pseudomonas sp. YM15、Acinetobacter sp. YM32具有萘双加氧酶基因,YM14和YM32具有甲苯双加氧酶和邻苯二酚双加氧酶基因,其余结果详见表 5图 2(b)(c).

表 5 石油降解菌芳烃类双加氧酶基因PCR检测 Table 5 PCR detection of the aromatic hydrocarbons genes of the oil-degrading bacteria

选取高效降解菌Rhodococcus sp. YM09,Pseudomonas sp. YM15,Acinetobacter sp. YM32和Rhodococcus sp. YM43的PCR产物送至上海生工生物工程公司测序,在NCBI基因库中进行Blast比对,结果表明,从YM32中扩增出的ALK2序列与Acinetobacter baumannii XH860(CP014538.1) 的烷烃单加氧酶序列相似度为96.61%;从YM09和YM43中扩增出的ALK3序列与Rhodococcus erythropolis PR4(AP008957.1) 和Rhodococcus erythropolis R138(CP007255.1) 的烷烃单加氧酶序列相似度分别为96.63%和95.70%;从YM15中扩增出的序列与Pseudomonas aeruginosa PAO1(AE004091.2) 的芳烃双加氧酶和联苯双加氧酶序列相似度分别为97.89%和98.97%;从YM32中扩增出的序列与Acinetobacter baumannii AB307-0294 (CP001172.1),Acinetobacter baumannii ATCC 17978(CP000521.1) 和Acinetobacter baumannii AB307-0294(CP001172.1) 的甲苯双加氧酶,萘双加氧酶和邻苯二酚双加氧酶序列相似度分别为98.43%、97.73%和96.07%.

3 讨论

通过富集培养从石油污染土壤中筛选分离到37株细菌,其中,革兰氏阳性菌18株,革兰氏阴性菌19株,分属于细菌域3个门、5个纲、21个属、34种,表明该油田污染荒漠土壤石油降解菌株具有多样性.其中假单胞菌属、红球菌属、微球菌属、寡养单胞菌属、无色杆菌属和葡萄球菌属为荒漠土壤的重要菌属,约占51.35%,与国内外相关报道有一定差异.任随周等[10]从广东某炼油厂石油污染土壤中分离筛选到28株细菌,分别为短杆菌属、假单胞菌属、邻单胞菌属和微球菌属,其中短杆菌属和假单胞菌属占绝对优势.史利荣等[11]从采油废水处理系统活性污泥中分离纯化得到200株细菌,经16S rRNA基因序列系统发育分析表明,所分离菌株分属于5个大的系统发育类群的23个属39个种,其中,α变形菌纲占2.5%,β变形菌纲占2.5%,γ变形菌纲占49.5%,厚壁门占27.5%,放线菌门占18%,不动杆菌属是可培养最优势菌属,进一步分析表明不动杆菌属、红球菌属、芽孢杆菌属、肠杆菌属(Enterobacter)、分支杆菌属(Mycobacterium)、克雷伯氏菌属(Klebsiella)、假单胞菌属、气单胞菌属(Aeromonas)和硝酸盐还原菌均对采油废水中石油类污染物具有不同程度降解作用,石油降解率均在30%以上,最高可达84.8%.

此次从荒漠土壤分离优势菌中红球菌属、假单胞菌属不仅种类占优势,而且菌株的降解效果明显,如Rhodococcus sp. YM43降解率为55.47%,Rhodococcus sp. YM09降解率为38.85%. Pseudomonas sp. YM15降解率为33.84%,这与文献[12-14]的报道一致,假单胞菌属、红球菌属是许多土壤及水体分离的优势菌,最初报道的石油降解菌也是假单胞菌属细菌,有关其降解机制等有较多报道[12-14].不动杆菌属、肠杆菌属、沙雷氏菌属、普罗维登斯菌属(Providencia)、代尔夫特菌属(Delftia)和纤维菌属(Cellulomonas)对原油的降解效果也有相关报道[15-16],此次分离的Acinetobacter sp. YM32降解率为45.91%,Enterobacter sp. YM29对石油降解率为39.80%. WU等[17]从石油污染的盐碱地土壤中分离的耐盐菌Serratia sp. BF40可降解污染土壤中38%的原油,当添加表面活性剂后,降解率可达59.1%. Providencia sp. 3对曲轴箱润滑油的降解率可达75.8%[18],从石化废水分离的Delftia lacustris LZ-C,能够分解代谢苯、甲苯、萘等多环芳烃,对重金属具有一定抵抗作用[19],纤维菌属GPM2609对多环芳烃荧蒽、芘和菲的降解率分别为15%、55%和100%[20].此次分离样品中有3株葡萄球菌属细菌——Staphylococcus sp. YM02、Staphylococcus sp. YM03和Staphylococcus sp. YM16,在原油中有较好生长,对原油的降解率分别为12.49%、8.05%和3.54%,这与其他文献报道[21]相似.

烷烃、芳香烃和多环芳烃分解主要依赖于细菌产生的各种代谢酶,不同烃类的降解途径及代谢酶各不相同,烷烃分解代谢常见的烷烃单加氧酶有膜烷烃羟化酶、细胞色素P450加氧酶、铜离子依赖性烷烃羟化酶等[22-23],芳烃代谢相关的酶有芳烃双加氧酶[24-25]、邻苯二酚双加氧酶[26]、甲苯双加氧酶[27]、联苯双加氧酶[28]等.通过特异性PCR检测发现,25株细菌具有烷烃单加氧酶基因,YM09、YM14、YM15、YM32、YM36和YM43具有芳烃双加氧酶基因,YM05、YM09、YM14、YM15、YM32和YM36具有联苯双加氧酶基因,YM09、YM14、YM15和YM32具有萘双加氧酶基因,YM14、YM32和YM43具有甲苯双加氧酶基因,YM14和YM32还检测出邻苯二酚双加氧酶基因,此结果表明细菌中石油烃分解降解基因具有多样性.有些菌株中没有检测到相应的烷烃及芳烃加氧酶,可能是由于这些菌株的代谢相关基因与笔者所选择的基因序列差异性较大的原因,有待于进一步研究.

4 结论

a) 荒漠油田污染土壤可培养细菌具有丰富多样性,分离的37株细菌属于放线菌门、γ变形菌纲、β变形菌纲、厚壁菌门和α变形菌纲的21个属、34种,主要为放线菌纲和γ变形菌纲,分别占35.14%和32.43%.

b) 分离的细菌有不同的石油降解能力,其中YM43降解率可达55.47%,另有8株细菌降解率不低于30.55%,11株细菌降解率介于10.05%~28.37%,18株细菌降解率不高于8.05%.

c) 大部分降解菌中检测到石油降解相关基因,25株细菌具有烷烃单加氧酶基因,6株细菌含芳烃双加氧酶基因,6株细菌含联苯双加氧酶基因,4株细菌含萘双加氧酶基因,3株细菌含甲苯双加氧酶基因,2株细菌含邻苯二酚双加氧酶基因.

参考文献
[1]
WATANABE K, KODAMA Y, HAMAMURA N, et al. Diversity, abundance, and activity of archaeal populations in oil-contaminated groundwater accumulated at the bottom of an underground crude oil storage cavity[J]. Applied and Environmental Microbiology, 2002, 68(8): 3899-3907. DOI:10.1128/AEM.68.8.3899-3907.2002 (0)
[2]
PENG Mu, ZI Xiaoxu, WANG Qiuyu. Bacterial community diversity of oil-contaminated soils assessed by high throughput sequencing of 16S rRNA genes[J]. International Journal of Environmental Research and Public Health, 2015, 12(10): 12002-12015. DOI:10.3390/ijerph121012002 (0)
[3]
王新新, 白志辉, 金德才, 等. 石油污染盐碱土壤翅碱蓬根围的细菌多样性及耐盐石油烃降解菌筛选[J]. 微生物学通报, 2011, 38(12): 1768-1777.
WANG Xinxin, BAI Zhihui, JIN Decai, et al. Bacterial diversity and halotolerant petroleum-degrading bacteria of the rhizosphere of Suaeda salsa (L.) in petroleum-contaminated saline-alkali soil[J]. Microbiology China, 2011, 38(12): 1768-1777. (0)
[4]
SAADOUN I. Isolation and characterization of bacteria from crude petroleum oil contaminated soil and their potential to degrade diesel fuel[J]. Journal of Basic Microbiology, 2002, 42(6): 420-428. DOI:10.1002/1521-4028(200212)42:6<420::AID-JOBM420>3.0.CO;2-W (0)
[5]
AL-SALEH E, DROBIOVA H, OBUEKWE C. Predominant culturable crude oil-degrading bacteria in the coast of Kuwait[J]. International Biodeterioration and Biodegradation, 2009, 63(4): 400-406. DOI:10.1016/j.ibiod.2008.11.004 (0)
[6]
吴常亮, 王鑫, 邵宗泽. 印度洋表层海水石油降解菌的多样性分析[J]. 微生物学报, 2010, 50(9): 1218-1225.
WU Changliang, WANG Xin, SHAO Zongze. Diversity of oil-degrading bacteria isolated form the Indian Ocean sea surface[J]. Acta Microbiologica Sinica, 2010, 50(9): 1218-1225. (0)
[7]
信艳娟, 吴佩春, 曹旭鹏, 等. 大连湾原油降解菌的分离和多样性分析[J]. 微生物学通报, 2013, 40(6): 979-987.
XIN Yanjuan, WU Peichun, CAO Xupeng, et al. Isolation and diversity of crude oil-degrading bacteria from Dalian Bay[J]. Microbiology China, 2013, 40(6): 979-987. (0)
[8]
韩平, 郑立, 崔志松, 等. 胜利油田滩涂区石油降解菌的筛选、鉴定及其多样性分析[J]. 应用生态学报, 2009, 20(5): 1202-1208.
HAN Ping, ZHENG Li, CUI Zhisong, et al. Isolation, identification and diversity analysis of petroleum-degrading bacteria in Shengli Oil Field wetland soil[J]. Chinese Journal of Applied Ecology, 2009, 20(5): 1202-1208. (0)
[9]
TETSURO K, YOSHIRO S, KAZUNARI S, et al. Design of PCR primers and gene probes for general detection of alkane-degrading bacteria[J]. Microbes and Environments, 2002, 17(3): 114-121. DOI:10.1264/jsme2.17.114 (0)
[10]
任随周, 郭俊, 邓穗儿, 等. 石油降解菌的分离鉴定及石油污染土壤的细菌多样性[J]. 生态学报, 2005, 25(12): 3314-3322.
REN Suizhou, GUO Jun, DENG Suier, et al. Isolation and identification of petroleum degrading strains and the diversity of microbes in petroleum-contaminated soils[J]. Acta Ecologica Sinica, 2005, 25(12): 3314-3322. DOI:10.3321/j.issn:1000-0933.2005.12.029 (0)
[11]
史利荣, 解庆林, 刘利, 等. 采油废水处理系统活性污泥中可培养菌群多样性研究[J]. 环境科学与技术, 2014, 37(6): 38-43.
SHI Lirong, XIE Qinglin, LIU Li, et al. Diversity of cultivable bacteria in activated sludge of an oil-field's wastewater treatment system[J]. Environmental Science & Technology (China), 2014, 37(6): 38-43. (0)
[12]
EL HANAFY A A, ANWAR Y, MOHAMED S A, et al. Isolation and identification of bacterial consortia responsible for degrading oil spills from the coastal area of Yanbu, Saudi Arabia[J]. Biotechnology and Biotechnological Equipment, 2016, 30(1): 69-74. DOI:10.1080/13102818.2015.1086282 (0)
[13]
LI Chen, ZHOU Zhengxi, JIA Xiaoqiang, et al. Biodegradation of crude oil by a newly isolated strain Rhodococcus sp. JZX-01[J]. Applied Biochemistry and Biotechnology, 2013, 171(7): 1715-1725. DOI:10.1007/s12010-013-0451-4 (0)
[14]
YAN G, CAI B, CHEN C, et al. Bioremediation of crude oil contaminated soil[J]. Petroleum Science and Technology, 2015, 33(6): 717-723. DOI:10.1080/10916466.2014.954670 (0)
[15]
JAIN P K, GUPTA V K, PATHAK H, et al. Characterization of 2T engine oil degrading indigenous bacteria, isolated from high altitude (Mussoorie), India[J]. World Journal of Microbiology and Biotechnology, 2010, 26(8): 1419-1426. DOI:10.1007/s11274-010-0316-8 (0)
[16]
LUO Qun, ZHANG Jianguo, SHEN Xianrong, et al. Isolation and characterization of marine diesel oil-degrading Acinetobacter sp. strain Y2[J]. Annals of Microbiology, 2013, 62(2): 633-640. (0)
[17]
WU T, XIE W J, YI Y L, et al. Surface activity of salt-tolerant Serratia spp. and crude oil biodegradation in saline soil[J]. Plant Soil and Environment, 2012, 58(9): 412-416. (0)
[18]
AYANDELE A A, FAGADE O E. Biodegradation of aliphatic compounds present in crankcase oil by bacteria isolated from contaminated soil[J]. American Journal of Engineering and Technology Research, 2015, 15(2): 22-40. (0)
[19]
WU Wenyang, HUANG Haiying, LING Zhenmin, et al. Genome sequencing reveals mechanisms for heavy metal resistance and polycyclic aromatic hydrocarbon degradation in Delftia lacustris strain LZ-C[J]. Ecotoxicology, 2016, 25(1): 234-247. DOI:10.1007/s10646-015-1583-9 (0)
[20]
BRITO E M S, GUYONEAUD R, GONI-URRIZA M, et al. Characterization of hydrocarbonoclastic bacterial communities from mangrove sediments in Guanabara Bay, Brazil[J]. Research in Microbiology, 2006, 157(8): 752-762. DOI:10.1016/j.resmic.2006.03.005 (0)
[21]
刘陈立, 邵宗泽. 海洋石油降解微生物的分离鉴定[J]. 海洋学报, 2005, 27(4): 114-120.
LIU Chenli, SHAO Zongze. Isolation and characterization of oil-degrading marine micro-organisms[J]. Acta Oceanologica Sinica, 2005, 27(4): 114-120. (0)
[22]
TANCSICS A, BENEDEK T, SZOBOSZLAY S, et al. The detection and phylogenetic analysis of the alkane 1-monooxygenase gene of members of the genus Rhodococcus[J]. Systematic and Applied Microbiology, 2015, 38(1): 1-7. DOI:10.1016/j.syapm.2014.10.010 (0)
[23]
BRAVO A L, SIGALA J C, LE BORGNE S, et al. Expression of an alkane monooxygenase (alkB) gene and methyl tert-butyl ether co-metabolic oxidation in Pseudomonas citronellolis[J]. Biotechnology Letters, 2015, 37(4): 807-814. DOI:10.1007/s10529-014-1737-5 (0)
[24]
DEMANECHE S, MEYER C, MICOUD J, et al. Identification and functional analysis of two aromatic-ring-hydroxylating dioxygenases from a Sphingomonas strain that degrades various polycyclic aromatic hydrocarbons[J]. Applied and Environmental Microbiology, 2004, 70(11): 6714-6725. DOI:10.1128/AEM.70.11.6714-6725.2004 (0)
[25]
CAPEK J, MUSILOVA L, MACEK T, et al. Aromatic ring hydroxylating dioxygenases-structure-function relationships[J]. Chemicke Listy, 2014, 108(3): 182-190. (0)
[26]
OLAPADE O A, RONK A J. Isolation, characterization and community diversity of indigenous putative toluene-degrading bacterial populations with catechol-2, 3-dioxygenase genes in contaminated soils[J]. Microbial Ecology, 2015, 69(1): 59-65. DOI:10.1007/s00248-014-0466-6 (0)
[27]
NITISAKULKAN T, OKU S, KUDO D, et al. Degradation of chloroanilines by toluene dioxygenase from Pseudomonas putida T57[J]. Journal of Bioscience and Bioengineering, 2014, 117(3): 292-297. DOI:10.1016/j.jbiosc.2013.08.012 (0)
[28]
SHUMKOVA E S, EGOROVA D O, KORSAKOVA E S, et al. Molecular biological characterization of biphenyl-degrading bacteria and identification of the biphenyl 2, 3-dioxygenase alpha-subunit genes[J]. Microbiology, 2014, 83(1): 160-168. (0)