环境科学研究  2017, Vol. 30 Issue (7): 1031-1040  DOI: 10.13198/j.issn.1001-6929.2017.02.33

引用本文  

封丽, 程艳茹, 封雷, 等. 三峡库区主要水域典型抗生素分布及生态风险评估[J]. 环境科学研究, 2017, 30(7): 1031-1040.
FENG Li, CHENG Yanru, FENG Lei, et al. Distribution of Typical Antibiotics and Ecological Risk Assessment in Main Waters of Three Gorges Reservoir Area[J]. Research of Environmental Sciences, 2017, 30(7): 1031-1040.

基金项目

重庆市基础科研项目(2015cstc-jbky-01607)

责任作者

张晟(1971-), 男, 重庆江津人, 研究员, 博士, 主要从事污染生态学研究, shengzsts@126.com

作者简介

封丽(1983-), 女, 重庆涪陵人, 高级工程师, 硕士, 主要从事区域水体污染防治研究, 17495028@qq.com

文章历史

收稿日期:2016-11-23
修订日期:2017-03-16
三峡库区主要水域典型抗生素分布及生态风险评估
封丽1,2 , 程艳茹1 , 封雷3 , 张晟1 , 刘异齐1     
1. 重庆市环境科学研究院, 重庆市生态环境遥感监测大数据应用协同创新中心, 重庆 401147;
2. 重庆大学材料科学与工程学院, 重庆 400044;
3. 中国科学院重庆绿色智能技术研究院大数据挖掘与应用中心(兼三峡工程生态环境在线监测中心), 重庆 400714
摘要:为评价三峡库区主要水域典型抗生素的污染状况和生态风险,利用固相萃取-高效液相色谱-串联三重四极杆质谱联用法(SPE-HPLC-MS/MS),分析三峡库区长江干流和6条支流表层水体中6类28种抗生素的质量浓度,根据欧盟环境风险评价方法计算RQS(风险商值)及RQsum(联合风险商值),并按照Hernando等提出评级方法评价研究区域的生态风险等级.结果表明:三峡库区7条河流共检出4类10种抗生素,质量浓度范围为0.6~218.0 ng/L,其中除OFX(氧氟沙星)和CAP(氯霉素)外,其余8种[SDI(磺胺嘧啶)、SMX(磺胺甲唑)、SMZ(磺胺二甲嘧啶)、ERM(红霉素)、ROM(罗红霉素)、TYL(泰乐菌素)、FF(氟苯尼考)、LIN(林可霉素)]均为畜禽药品,并且FF、LIN在我国畜禽药品中使用量排名居前五位.7条河流抗生素RQsum由高到低依次为濑溪河>琼江>綦江>碧溪河>嘉陵江>长江>乌江,其中,濑溪河RQsum高达5.532,SMX、ERM和OFX均为高风险,说明其对濑溪河水体中相应的水生生物表现出较高的毒性风险;琼江、綦江、碧溪河和嘉陵江的RQsum均处于1~2之间,表现出较高生态风险,但4条河流检出抗生素的单个RQS均小于1,处于低风险;长江的RQsum为0.605,检出抗生素中TYL、ERM和ROM处于中风险,其余为低风险;乌江的RQsum为0.013,检出抗生素均处于低风险,说明水体受人类活动干扰最小.研究显示,三峡库区主要水域中抗生素含量略低于其他水域,但应进一步强化对畜禽养殖行业抗生素使用的监管,开展畜禽粪污还田技术规范中抗生素含量限制的相关研究.
关键词抗生素    地表水    污染特征    生态风险评估    三峡库区    
Distribution of Typical Antibiotics and Ecological Risk Assessment in Main Waters of Three Gorges Reservoir Area
FENG Li1,2 , CHENG Yanru1 , FENG Lei3 , ZHANG Sheng1 , LIU Yiqi1     
1. Chongqing Environmental Sciences Research Institute, Chongqing Collaborative Innovation Center of Big Data Application in Eco-Environmental Remote Sensing, Chongqing 401147, China;
2. College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China;
3. Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Online Monitoring Center of Ecological and Environmental of the Three Gorges Project, Chongqing 400714, China
Abstract: The mass concentrations of 28 kinds of antibiotics (6 types) from the stem streams and 6 tributaries of the Yangtze River in the Three Gorges Reservoir area were investigated by solid phase extraction, high performance liquid chromatography and triple quadrupole mass spectrometry (SPE-HPLC-MS/MS). The ecological risks were assessed by the rating method proposed by Hernando and according to the EU environmental risk assessment method to calculate the risk quotient value (RQS) and joint risk quotient value (RQsum). The results indicated that 10 antibiotics were detected from drugs for livestock and poultry with a mass concentration range of 0.6-218 ng/L, except ofloxacin (OFX) and chloramphenicol (CAP). The detected antibiotics included sulfadiazine (SDI), sulfamethoxazole(SMX), sulfamethazine(SMZ), erythromycin (ERM), roxithromycin (ROM), tylosin (TYL), florfenicol (FF) and lincomycin (LIN). Among them, FF and LIN are ranked in the top five livestock and poultry drugs used in China. Moreover, the RQsum exhibited an interesting finding:Laixi River > Qiongjiang River > Qijiang River > Bixi River > Jialing River > Yangtze River > Wujiang River. RQsum value in Laixi River reached up to 5.5, indicating higher risk of toxicity to aquatic organisms from three kinds of antibiotics SMX, ERM and OFX. In contrast, RQsum in Qiongjiang River, Qijiang River, Bixi River and Jialing River were in the range of 1 to 2 with relatively high risk, but the individual RQS in each of the four rivers was less than 1, implying low risk. In addition, RQsum value of the Yangtze River was 0.605; the risk status of antibiotics TYL, ERM and ROM were in the middle level, and the risk status of other antibiotics risk were at a low level. Interestingly, RQsum of Wujiang River was 0.013, and the detected antibiotics were at low risk, indicating that the water body had minimum interference by human activities. Although the contents of antibiotics in major water basins around the Three Gorges Reservoir were slightly lower than those in other rivers, the antibiotics are used in great doses in the livestock and poultry breeding industry. Therefore, regulations should be strengthened and more studies should be conducted on limiting the amount of livestock and poultry feces that is returned to the fields.
Keywords: antibiotics    surface water    pollution characteristics    ecological risk assessment    Three Gorges Reservoir    

三峡水库是我国特大型水库,具有防洪、发电、供水、养殖等功能,综合效益显著,同时亦关系着长江中下游沿线几亿人的生产生活用水,因此其生态功能极其关键[1].目前,针对库区水环境的研究多集中于常规污染物的分布、累积及环境影响[2],水环境中新型污染物抗生素的调查研究还属起步阶段,鲜有针对库区大范围水域中抗生素污染的研究,缺乏调查评价的基础数据.抗生素是用于治疗各种细菌感染或抑制致病微生物感染的药物,按照化学结构主要分为β-内酰胺类、磺胺类、大环内酯类、四环素类、氟喹诺酮类等[3].抗生素在人类和动物体内不能被充分吸收,大多会以原形或活性代谢产物的形式随排泄物进入污水处理厂或直接进入环境[4-5].虽然大部分抗生素的半衰期较短,但由于其频繁使用并进入环境,导致形成“假持续”现象,对生态环境构成潜在风险[6-8].抗生素对水生生物可能存在一定的急性或慢性毒性,其在抑制或杀灭病原体的同时也可能抑制环境中有益微生物的活性,干扰甚至破坏生态系统循环[9-10].抗生素在生物体内残留对人体健康具有潜在危害,一般不表现为急性毒性作用,但长期摄入含低剂量抗生素类药物的食品,可能由于累积对器官产生影响[11-12]. 2013年,我国36种主要抗生素使用总量约为92 700 t,人类和畜禽以原药或代谢产物等形式排出体外的抗生素约54 000 t,最终通过生活污水排放、养殖废水排放、农业粪肥灌溉径流等不同途径被环境接收的抗生素约为53 800 t[13].我国抗生素过量使用情况严重[14],由此所导致的环境污染和生态毒性已逐渐演变成重大环境问题之一[15].

抗生素在水环境中的检出受各地区用药习惯影响显著,参考我国36种主要抗生素使用特征,根据库区卫计委、药监局等部门提供的抗生素相关资料,结合问卷调查和现场调查的结果,选取6类28种抗生素作为分析对象,研究其在库区长江干流及重要支流(嘉陵江、乌江、濑溪河、碧溪河、綦江河、琼江)水环境中的分布特征,并初步评估其污染水平和生态风险,以期为库区水环境保护和特殊污染物研究提供数据基础和技术参考.

1 材料与方法 1.1 样品采集

2016年5—6月(非洪水期),在三峡库区长江、嘉陵江、乌江、濑溪河、碧溪河、綦江河、琼江等7条河流按照水体流向分别设置4~6个采样断面,累计布设断面31个,每个断面设置左、中、右3个水平采样点,共采集样品93个,分别进行分析.具体布点见图 1.水样的采集和保存按GB/T 12999—1999《水质采样样品保存和管理技术规定》中的一般性规定执行.每次取表层水面以下0.5 m处水样,pH调节为3,密闭保存于棕色玻璃采样瓶中带回实验室并尽快进行固相萃取富集浓缩.

图 1 三峡库区主要水域采样断面分布 Figure 1 Sampling sites in main waters of the Three Gorges Reservoir area
1.2 仪器与试剂

仪器:液相色谱-质谱/质谱联用仪(LC-MC/MS,Shimadzu LC-20A+AB API 4000);全自动固相萃取仪(Reeko FOTECTOR-06C);HLB固相萃取柱(6 mL,1 000 mg,waters Oasis HLB);WXH微型漩涡混合器;超声波清洗器;DC-12氮气吹干仪;0.7 μm玻璃纤维滤膜;0.22 μm针头式过滤器.

试剂:28种抗生素标品,购自Dr. Ehrenstorfer GmbH公司;乙腈、甲醇为色谱纯,购自Thermo Fisher公司;盐酸、乙二胺四乙酸二钠、磷酸氢二钾为分析纯,购自国药集团化学试剂有限公司;实验室用水按照GB/T 6682—2008《分析实验室用水规格和试验方法》一级水要求制备.

1.3 分析方法

样品预处理:将1 L水样经0.7 μm孔径的玻璃纤维滤膜过滤,加入0.5 g乙二胺四乙酸二钠和8.7 g磷酸氢二钾,搅拌并超声溶解. HLB固相萃取柱使用前依次以10 mL甲醇、10 mL超纯水活化.水样以3~5 mL/min的流速通过HLB固相萃取柱,水样萃取完后,萃取柱在真空下抽干30 min,再以10 mL水淋洗,最后依次以5 mL纯甲醇、10 mL 5%(体积比)氨水甲醇洗脱.收集的洗脱液在40 ℃水浴条件下用氮气缓缓吹至近干,以1 mL 20%(体积比)乙腈水溶液溶解残渣,经0.22 μm滤膜过滤,供LC-MC/MS测定.

液相条件:Shimadzu VP-ODS C18色谱柱(4.6 mm×150 mm,5 μm);进样量10 μL;流动相流速:0.3 mL/min;柱温40 ℃;流动相A(0.1%甲酸的乙腈),流动相B(2 mmol/L乙酸铵,含0.1%甲酸).测定时采用的流动相梯度:0~7 min,10%~40% A;7~9 min,40%~60% A;9~10 min,60%~10% A;10~12 mim,10%A.目标抗生素质谱参数根据抗生素种类不同进行调整.以甲醇为溶剂配制28种抗生素的储备液(1.000 g/L),然后分别取28种储备液用甲醇配制成1 000 μg/L的混合标准液,最后以水为溶剂逐级稀释混合标准液制备0.8、4、10、20、100、200 μg/L 6个质量浓度的系列标准溶液,经分析获得工作曲线,28种目标成分的相关系数范围为0.997 5~0.999 6.在1 L水源水中加入10、50和200 ng抗生素混标,同时测定空白组分的抗生素含量,并分种类计算回收率,每组设3个平行样.抗生素回收率在89.2%~105.8%,方法相对标准偏差小于5%.

2 结果与讨论 2.1 抗生素质量浓度

表 1可知,长江及6条支流表层水体中6类28种抗生素共检出4类10种,包括磺胺类的磺胺嘧啶(SDI)、磺胺甲唑(SMX)、磺胺二甲嘧啶(SMZ);大环内酯类的红霉素(ERM)、罗红霉素(ROM)、泰乐菌素(TYL);氟喹诺酮类的氧氟沙星(OFX);其他类的氯霉素(CAP)、氟苯尼考(FF)、林可霉素(LIN).研究[16-17]表明,四环素类抗生素是很强的螯合剂,在固体颗粒上的吸附能力较强,在沉积物中检出较多;β-内酰胺类在环境中极易降解,虽然使用量较大,但在水体中检出较少.

表 1 三峡库区主要水域抗生素质量浓度 Table 1 The concentrations of antibiotics in the Main Waters of Three Gorges Reservoir area

表 2可见,在检出的10种抗生素中,FF、LIN的检出率最高,达80.65%;ERM、ROM和CAP的检出率均在60%以上;SDI的检出率最低,不到10%. LIN、FF、ERM、ROM和CAP的检出率均在60%以上,是库区水域中主要残留的抗生素.

表 2 三峡库区主要水域抗生素的统计特征 Table 2 Statistical characteristics of the concentrations antibiotics in the main waters of the Three Gorges Reservoir area

环境中抗生素主要来源于医药使用、畜禽养殖、水产养殖和医药工业废水排放等[18]. 2015年,研究区域内的畜禽养殖场接近1.2×104个,其中猪场有7 448个,集约化以上的养殖场(小区)达54%;牛(肉牛、奶牛)场有890个,集约化以上的养殖场(小区)达57%;鸡(肉鸡、蛋鸡)场有2 271个,集约化以上的养殖场(小区)达38%.上述3类养殖规模基本涵盖了养殖总量的90%以上,所产生的粪尿量也涵盖了总畜禽粪尿量的90%以上(以常年存栏量估算).抗生素在动物体内不能完全代谢降解,随动物尿粪排出体外,直接进入水体,或者通过污水灌溉和粪便施肥等资源化利用途径进入土壤,随地表径流等方式进入水环境[19-20].在检出的10种抗生素中,有8种为主要的畜禽药品,即SDI、SMX、SMZ、ERM、ROM、TYL、FF和LIN. LIN、FF在我国抗生素药品中使用量排名居前五位,研究水域LIN和FF较高水平的质量浓度和检出率应引起注意,并且LIN对厌氧菌和革兰氏阳性菌均有较强的抗菌能力和抑制作用[21],常规污水处理工艺很难降解;磺胺类药物是应用最早的人工合成抗菌药物,磺胺类(SDI、SMX、SMZ)虽然检出率不高,但其质量浓度均较高,其中ρ(SDI)(90.7 ng/L)最高,猪粪上清液中磺胺类抗生素是其优势组分[22];大环内酯类易水解或吸附在土壤中,对土壤的硝化作用、植物对营养物质的摄入等产生影响,破坏土壤生态平衡[23],虽然ERM(5.8 ng/L)、ROM(16.4 ng/L)、TYL(9.2 ng/L)检出的最高质量浓度均不高,但检出率均在40%及以上.

2.2 抗生素分布特征

图 2可见,三峡库区主要水域中抗生素平均质量浓度由高到低依次为濑溪河>碧溪河>琼江>綦江河>长江>嘉陵江>乌江,支流水体中抗生素质量浓度(105.8~352.7 ng/L)明显高于长江、嘉陵江和乌江(6.4~83.8 ng/L),由于支流水体自净能力远低于干流,水体中抗生素的残留浓度受水文条件影响较显著.

图 2 三峡库区主要水域抗生素分布特征 Figure 2 Distribution of the contamination of antibiotics in the main waters of the Three Gorges Reservoir area

按照河流分析,濑溪河残留抗生素质量浓度(352.7 ng/L)明显高于其他河流.濑溪河发源于重庆市大足区,重庆境内流经大足区、荣昌区,多年平均流量20.6 m3/s,流域涵盖29个镇街,服务人口131.56×104人,流域范围内规模化畜禽养殖场498家,以猪、牛、鸡养殖为主,2013年年末生猪出栏83×104头,家禽584×104只,大牲畜8 496头.濑溪河流域检出的8种抗生素中,除OFX外均为畜禽用药,ρ(LIN)高达218 ng/L,水体受流域内畜禽养殖影响显著,应引起重视.按照检出抗生素种类分析,濑溪河最多,共检出8种;其次为长江、碧溪河、琼江,均检出7种;嘉陵江、綦江河检出6种;乌江检出最少,仅3种.

研究区域检出抗生素存在较明显的地域差异,SDI(ρmax=90.7 ng/L)仅在碧溪河检出,SMZ(ρmax=38.1 ng/L)仅出现在长江;OFX(ρmax=16.4 ng/L)仅在濑溪河检出;CAP、FF、LIN在7条河流均检出,CAP(ρmax=3.4 ng/L)最大值出现在长江,FF(ρmax=39.5 ng/L)最大值出现在碧溪河,LIN最大值出现在濑溪河;ERM、ROM在除乌江外的其余6条河流均被检出,其最大值(ERM:ρmax=21.4 ng/L. ROM:ρmax=39.7 ng/L)均出现在濑溪河;TYL在长江、嘉陵江、濑溪河和琼江均被检出,TYL (ρmax=19.5 ng/L)出现在嘉陵江.抗生素在水环境中的残留受人类生产生活干扰显著,濑溪河(7号采样点)、碧溪河(11号采样点)、綦江河(16号采样点)、琼江(29号采样点)等点位属于源头区域,人类活动迹象不明显,水体中均未有抗生素检出[24].

2.3 不同区域地表水抗生素分布水平

目前,在水环境中已发现超过30种抗生素存在,抗生素在水环境中检出质量浓度的不同反映了不同区域抗生素使用的差异.由表 3可见,三峡库区检出抗生素质量浓度比其他水域略低,仅ρ(SDI)、ρ(ROM)、ρ(OFX)略高于长江入江口[25-26]和黄浦江[27-28],低于黄河[29]、珠江[30-33]和深圳河[33]及其他国家检出水体;ρ(SMX)、ρ(SMZ)、ρ(ERM)、ρ(FF)、ρ(CAP)均不同程度地低于已有研究数据[34-39]ρ(LIN)与意大利波河[36]相当.总体来看,我国水环境中抗生素质量浓度与国外相当,检出质量浓度多在几到几百ng/L;沿海水域检出抗生素质量浓度偏高,珠江中的ρ(SMZ)、ρ(ERM)、ρ(ROM)及深圳河中的ρ(ERM)均超过1 000 ng/L.从抗生素检出种类分析,三峡库区水域中检出抗生素以磺胺类和LIN为主,其次是氟喹诺酮类和大环内酯类;长江入江口除TYL、LIN未查到文献检出外,其余与三峡库区水域中检出抗生素保持一致,浓度水平相当;黄浦江检出ρ(SMZ)偏高,最大值为623.3 g/L;珠江和深圳河抗生素污染较严重,检出抗生素均保持较高质量浓度.国外其他水域中,越南湄公河ρ(SMZ)最高(19 153 g/L),其他检出种类和最大浓度均低于我国.因此,抗生素在我国水环境中的残留应引起重视.

表 3 不同区域水体中抗生素质量浓度比较 Table 3 Comparison of antibiotics residues in surface water from different regions
2.4 抗生素生态风险评价

环境中痕量污染物质可以根据欧盟环境风险评价方法[31],以RQS(风险商值)评估其生态风险:

$ {\rm{R}}{{\rm{Q}}_{\rm{s}}} = {\rm{PEC}}/{\rm{PNEC}} $

$ {\rm{R}}{{\rm{Q}}_{\rm{s}}} = {\rm{MEC}}/{\rm{PNEC}} $

式中:PEC为污染物环境预测质量浓度,ng/L;MEC为污染物实际监测质量浓度,ng/L;PNEC为预测无效应浓度,ng/L,通过从文献中收集抗生素对一些物种的急性和慢性毒理数据求得,即用最敏感生物的毒性数据除以适当的评价因子即得到PNEC,有一项短期实验数据的(EC50)评价因子选1 000,一项长期实验数据的(NOEC)评价因子选100[42],见表 4.

表 4 抗生素对应最敏感物种的毒理数据 Table 4 Aquatic toxicity data of antibiotics to the most sensitive aquatic species

基于影响最大考虑,RQS的计算采用筛选出最敏感物种的PNEC,并且以抗生素质量浓度的最大值进行计算[43].

按照Hernando等[45]提出的RQS分类方法表征生态风险的不同程度:RQS < 0.1为低风险;0.1≤RQS < 1为中风险;RQS≥1为高风险.目前调查及相关研究表明,多种药品在水环境中会因共存而毒害作用加强,根据国外参考文献,利用简单叠加模型[11]计算联合毒性风险商(RQsum):

$ {\rm{R}}{{\rm{Q}}_{{\rm{sun}}}} = \sum\limits_{i = 1}^n {{\rm{R}}{{\rm{Q}}_i}} $

式中,RQi为化合物i的RQ值,n为目标化合物的种类数.

按河流分析,由表 5图 3可见,7条河流抗生素表现出的RQsum由高到低依次为濑溪河>琼江>綦江>碧溪河>嘉陵江>长江>乌江.其中濑溪河RQsum高达5.532,SMX、ERM和OFX这3种抗生素均为高风险,说明其对濑溪河水体中相应的水生生物表现出较高的毒性风险;琼江、綦江、碧溪河和嘉陵江的RQsum均处于1~2之间,表现出较高生态风险,但4条河流检出抗生素的单个RQS均小于1,部分处于低风险;长江的RQsum为0.605,检出抗生素中TYL、ERM和ROM处于中风险,其余为低风险;乌江的RQsum为0.013,检出抗生素均处于低风险,说明水体受人类活动干扰最小.

表 5 三峡库区主要水域抗生素风险评估商值 Table 5 RQsum for the antibiotics in the main waters of the Three Gorges Reservoir area

图 3 三峡库区主要水域抗生素联合生态风险 Figure 3 RQsum for the antibiotics in the main waters of the Three Gorges Reservoir area

按检出抗生素种类分析,由图 4可见,FF、CAP和磺胺类SMZ的RQS均小于0.1,但FF、CAP在7条河流中均有检出,说明这2种抗生素在三峡库区使用广泛,但其表现出的生态风险还不显著;SDI、TYL、ERM、ROM和LIN表现为中等风险水平,并且ERM和ROM在除乌江外的水体中均有检出,ERM的RQS最大值处于高风险水平,这5种抗生素对生态的潜在影响应引起重视;SMX和OFX表现出较高的急性和慢性毒性风险,应进一步加强监管,规范濑溪河、琼江、綦江、碧溪河等流域内畜禽养殖抗生素的使用,研究经处理后的畜禽粪便、堆肥以及以畜禽粪便为主要原料制成的各种肥料在农田中使用时抗生素所含限值,编制相关畜禽粪污中抗生素还田技术规范.

图 4 三峡库区主要水域抗生素风险商值 Figure 4 RQS for the antibiotics in the main waters of the Three Gorges Reservoir area
3 结论

a) 分析三峡库区长江干流和主要支流表层水体中6类28种抗生素的质量浓度特征,共检出4类10种,包括磺胺类的SDI、SMX、SMZ;大环内酯类的ERM、ROM、TYL;氟喹诺酮类的OFX;其他类的CAP、FF、LIN.其中,除OFX和CAP外,其余8种均为畜禽药品,并且FF、LIN在我国畜禽药品中使用量排名前五位.

b) 三峡库区主要水域中抗生素平均质量浓度由高到低依次为濑溪河>碧溪河>琼江>綦江河>长江>嘉陵江>乌江,支流水体中抗生素质量浓度(105.8~352.7 ng/L)高于长江、嘉陵江和乌江(6.4~83.8 ng/L).

c) 三峡库区检出抗生素质量浓度比其他水域略低,ρ(SDI)、ρ(ROM)、ρ(OFX)略高于长江入江口和黄浦江,低于黄河、珠江和深圳河及其他国家检出水域;ρ(SMX)、ρ(SMZ)、ρ(ERM)、ρ(FF)、ρ (CAP)均不同程度低于其他有检出数据的水域;ρ (LIN)与意大利波河相当.

d) 7条河流抗生素表现出的RQsum由高到低依次为濑溪河>琼江>綦江>碧溪河>嘉陵江>长江>乌江,SMX和OFX在濑溪河、琼江、綦江、碧溪河均表现出较高的急性或慢性毒性风险.三峡库区应进一步加强抗生素的使用监管,特别是畜禽养殖行业,应开展畜禽粪污还田技术规范中抗生素含量限制的相关研究.

参考文献
[1]
王丽婧, 席春燕, 郑丙辉. 三峡库区流域水环境保护分区[J]. 应用生态学报, 2011, 22(4): 1039-1044.
WANG Lijing, XI Chunyan, ZHENG Binghui. Zoning of water environment protection in Three Gorges Reservoir watershed[J]. Chinese Journal of Applied Ecology, 2011, 22(4): 1039-1044. (0)
[2]
封丽, 李崇明, 胡必琴, 等. 三峡水库正常蓄水后支流沉积物的污染特征[J]. 环境科学研究, 2016, 29(3): 353-359.
FENG Li, LI Chongming, HU Biqin, et al. Analysis of pollution characteristics of surface sediments in Three Gorges Reservoir after normal impoundment[J]. Research of Environmental Sciences, 2016, 29(3): 353-359. (0)
[3]
GIONCHETTI P, RIZZELLO F, VENTURI A, et al. Antibiotic combination therapy in patients with chronic, treatment-resistant pouchitis[J]. Alimentary Pharmacology & Therapeutics, 1999, 13(6): 713-718. (0)
[4]
LIU Ying, GUAN Yuntao, GAO Baoyu, et al. Antioxidant responses and degradation of two antibiotic contaminants in Microcystis aeruginosa[J]. Ecotoxicology & Environmental Safety, 2012, 86(6): 23-30. (0)
[5]
KUMMERER K, HENNINGER A. Promoting resistance by the emission of antibiotics from hospitals and households into effluent[J]. Clinical Microbiology & Infection, 2003, 9(12): 1203-1214. (0)
[6]
HERNANDO M D, MEZCUA M, FERNANDEZALBA A R, et al. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments[J]. Talanta, 2006, 69(2): 334-342. DOI:10.1016/j.talanta.2005.09.037 (0)
[7]
HIRSCH R, TERNES T, HABERER K, et al. Occurrence of antibiotics in the aquatic environment[J]. Science of the Total Environment, 1999, 225(1/2): 109-118. (0)
[8]
CHRISTEN V, HICKMANN S, RECHENBERG B, et al. Highly active human pharmaceuticals in aquatic systems:a concept for their identification based on their mode of action[J]. Aquatic Toxicology, 2010, 96(3): 167-181. DOI:10.1016/j.aquatox.2009.11.021 (0)
[9]
BERDY J. Recent developments of antibiotic research and classification of antibiotics according to chemical structure[J]. Advances in Applied Microbiology, 1974, 18: 309-406. DOI:10.1016/S0065-2164(08)70573-2 (0)
[10]
ZHU Yongguan, JOHNSON T A, SU Jianqiang, et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(9): 3435-3440. DOI:10.1073/pnas.1222743110 (0)
[11]
李伟明, 鲍艳宇, 周启星. 四环素类抗生素降解途径及其主要降解产物研究进展[J]. 应用生态学报, 2012, 23(8): 2300-2308.
LI Weiming, BAO Yanyu, ZHOU Qixing. Degradation pathways and main degradation products of tetracycline antibiotics:research progress[J]. Chinese Journal of Applied Ecology, 2012, 23(8): 2300-2308. (0)
[12]
ZHANG Qianqian, YING Guangguo, PAN Changgui, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China:source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11): 6772-6782. (0)
[13]
严清, 訾成方, 张怡昕, 等. 重庆主城区水域典型PhACs污染水平及生态风险评估[J]. 环境科学研究, 2013, 26(11): 1178-1185.
YAN Qing, ZI Chengfang, ZHANG Yixin, et al. Pollution level and ecological risk assessment of typical pharmaceutically active compounds in the river basins of main districts of Chongqing[J]. Research of Environmental Sciences, 2013, 26(11): 1178-1185. (0)
[14]
RICHARDSON B J, LAM P K, MARTIN M. Emerging chemicals of concern:pharmaceuticals and personal care products (PPCPs) in Asia, with particular reference to southern China[J]. Marine Pollution Bulletin, 2005, 50(9): 913-920. DOI:10.1016/j.marpolbul.2005.06.034 (0)
[15]
高立红, 史亚利, 厉文辉, 等. 抗生素环境行为及其环境效应研究进展[J]. 环境化学, 2013, 32(9): 1619-1633.
GAO Lihong, SHI Yali, LI Wenhui, et al. Environmental behavior and impacts of antibiotics[J]. Environmental Chemistry, 2013, 32(9): 1619-1633. DOI:10.7524/j.issn.0254-6108.2013.09.004 (0)
[16]
郭晓, 李国良, 刘孝利, 等. 梅江流域沉积物中四环素类抗生素的空间分布特征及其迁移转化规律[J]. 环境科学学报, 2015, 35(10): 3202-3209.
GUO Xiao, LI Guoliang, LIU Xiaoli, et al. Spatial distribution, transportation and transformation of tetracyclines antibiotics in Meijiang River catchment[J]. Acta Scientiae Circumstantiae, 2015, 35(10): 3202-3209. (0)
[17]
LANGIN A, ALEXY R, KONIG A, et al. Deactivation and transformation products in biodegradability testing of β-lactams amoxicillin and piperacillin[J]. Chemosphere, 2009, 75(3): 347-354. DOI:10.1016/j.chemosphere.2008.12.032 (0)
[18]
QUINN B, GAGNE F, BLAISE C. An investigation into the acute and chronic toxicity of eleven pharmaceuticals (and their solvents) found in wastewater effluent on the cnidarian, Hydra attenuata[J]. Science of the Total Environment, 2008, 389(2/3): 306-314. (0)
[19]
刘建超, 陆光华, 杨晓凡, 等. 水环境中抗生素的分布、累积及生态毒理效应[J]. 环境监测管理与技术, 2012, 24(4): 14-20.
LIU Jianchao, LU Guanghua, YANG Xiaofan, et al. Distribution, accumulation and eco-toxicological effects of antibiotics in aquatic environment[J]. The Administration and Technique of Environmental Monitoring, 2012, 24(4): 14-20. (0)
[20]
孔维栋, 朱永官. 抗生素类兽药对植物和土壤微生物的生态毒理学效应研究进展[J]. 生态毒理学报, 2007, 2(1): 1-9.
KONG Weidong, ZHU Yongguan. A review on ecotoxicology of veterinary pharmaceuticals to plants and soil microbes[J]. Asian Journal of Ecotoxicology, 2007, 2(1): 1-9. (0)
[21]
杨军, 陆正禹, 胡纪萃, 等. 林可霉素生产废水的厌氧生物处理工艺[J]. 环境科学, 2001, 22(2): 82-86.
YANG Jun, LU Zhengyu, HU Jicui, et al. Anaerobic biological treatment of Lincomycin production wastewater[J]. Environmental Science, 2001, 22(2): 82-86. (0)
[22]
国彬, 姚丽贤, 何兆桓, 等. 高效液相色谱法测定畜禽废物中磺胺类、喹诺酮类抗生素[J]. 环境化学, 2011, 30(12): 2054-2059.
GUO Bin, YAO Lixian, HE Zhaohuan, et al. Determination of quinolones and sulfonamides antibiotics in animal waste by high performance liquid chromatography[J]. Environmental Chemistry, 2011, 30(12): 2054-2059. (0)
[23]
HUANG Chinghua, RENEW J E, SMEBY K L, et al. Assessment of potential antibiotic contaminants in water and preliminary occurrence analysis[J]. Journal of Contemporary Water Research and Education, 2011, 120(1): 4. (0)
[24]
CHANG Xiaosong, MEYERR M T, LIU Xiaoyun, et al. Determination of antibiotics in sewage from hospitals, nursery and slaughter house, wastewater treatment plant and source water in Chongqing region of Three Gorge Reservoir in China[J]. Environmental Pollution, 2010, 158(5): 1444-1450. DOI:10.1016/j.envpol.2009.12.034 (0)
[25]
YAN Caixia, YANG Yi, ZHOU Junliang, et al. Antibiotics in the surface water of the Yangtze Estuary:occurrence, distribution and risk assessment[J]. Environmental Pollution, 2013, 175(8): 22-29. (0)
[26]
伍婷婷, 张瑞杰, 王英辉, 等. 邕江南宁市区段表层沉积物典型抗生素污染特征[J]. 中国环境科学, 2013, 33(2): 336-344.
WU Tingting, ZHANG Ruijie, WANG Yinghui, et al. Investigation of the typical antibiotics in the sediments of the Yongjiang River, Nanning City, South China[J]. China Environmental Science, 2013, 33(2): 336-344. (0)
[27]
JIANG Lei, HU Xialin, YIN Daqiang, et al. Occurrence, distribution and seasonal variation of antibiotics in the Huangpu River, Shanghai, China[J]. Chemosphere, 2011, 82(6): 822-828. DOI:10.1016/j.chemosphere.2010.11.028 (0)
[28]
章强, 辛琦, 朱静敏, 等. 中国主要水域抗生素污染现状及其生态环境效应研究进展[J]. 环境化学, 2014, 33(7): 1075-1083.
ZHANG Qiang, XIN Qi, ZHU Jingmin, et al. The antibiotic contaminations in the main water bodies in China and the associated environmental and human health impacts[J]. Environmental Chemistry, 2014, 33(7): 1075-1083. DOI:10.7524/j.issn.0254-6108.2014.07.001 (0)
[29]
XU Weihai, ZHANG Gan, ZOU Shichun, et al. A preliminary investigation on the occurrence and distribution of antibiotics in the Yellow River and its tributaries, China[J]. Water Environment Research, 2009, 81(3): 248-254. DOI:10.2175/106143008X325719 (0)
[30]
XU Weihai, ZHANG Gan, LI Xiangdong, et al. Occurrence and elimination of antibiotics at four sewage treatment plants in the Pearl River Delta (PRD), South China[J]. Water Research, 2007, 41: 4526-4534. DOI:10.1016/j.watres.2007.06.023 (0)
[31]
YANG Jifeng, YING Guangguo, ZHAO Jianliang, et al. Spatial and seasonal distribution of selected antibiotics in surface waters of the Pearl Rivers, China[J]. Journal of Environmental Science & Health Part B Pesticides Food Contaminants & Agricultural Wastes, 2011, 46(3): 272-280. (0)
[32]
徐维海, 张干, 邹世春, 等. 香港维多利亚港和珠江广州河段水体中抗生素的含量特征及其季节变化[J]. 环境科学, 2006, 27(12): 2458-2462.
XU Weihai, ZHANG Gan, ZOU Shichun, et al. Occurrence and seasonal changes of antibiotics in the Victoria Harbour and the Pearl River, South China[J]. Environmental Science, 2006, 27(12): 2458-2462. DOI:10.3321/j.issn:0250-3301.2006.12.016 (0)
[33]
叶计朋, 邹世春, 张干, 等. 典型抗生素类药物在珠江三角洲水体中的污染特征[J]. 生态环境学报, 2007, 16(2): 384-388.
YE Jipeng, ZOU Shichun, ZHANG Gan, et al. Characteristics of selected antibiotics in the aquatic environment of the Pearl River Delta, South China[J]. Ecology and Environment, 2007, 16(2): 384-388. (0)
[34]
KOLPIN D W, FURLONG E T, MEYER M T, et al. Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999-2000:a national reconnaissance[J]. Environmental Science & Technology, 2002, 36(6): 1202-1211. (0)
[35]
WIEGEL S, AULINGER A, BROCKMEYER R, et al. Pharmaceuticals in the river Elbe and its tributaries[J]. Chemosphere, 2004, 57(2): 107-126. DOI:10.1016/j.chemosphere.2004.05.017 (0)
[36]
DAVIDE C, ETTORE Z, SARA C, et al. Strategic survey of therapeutic drugs in the rivers Po and Lambro in northern Italy[J]. Environmental Science & Technology, 2003, 37(7): 1241-1248. (0)
[37]
MANAGAKI S, MURATA A, TAKADA H, et al. Distribution of macrolides, sulfonamides, and trimethoprim in tropical waters:ubiquitous occurrence of veterinary antibiotics in the Mekong Delta[J]. Environmental Science & Technology, 2007, 41(23): 8004-8010. (0)
[38]
TAMTAM F, MERCIER F, BOT B L, et al. Occurrence and fate of antibiotics in the Seine River in various hydrological conditions[J]. Science of the Total Environment, 2008, 393(1): 84-95. DOI:10.1016/j.scitotenv.2007.12.009 (0)
[39]
GARCIA-GALAN MJ, DIAZ-CRUZ MS, BARCELO D. Occurrence of sulfonamide residues along the Ebro River basin:removal in wastewater treatment plants and environmental impact assessment[J]. Environment International, 2011, 37(2): 462-473. DOI:10.1016/j.envint.2010.11.011 (0)
[40]
HALLING-SORENSEN B. Algal toxicity of antibacterial agents used in intensive farming[J]. Chemosphere, 2000, 40(7): 731-739. DOI:10.1016/S0045-6535(99)00445-2 (0)
[41]
GRUNG M, KALLQVIST T, SAKSHAUG S, et al. Environmental assessment of Norwegian priority pharmaceuticals based on the EMEA guideline[J]. Ecotoxicology & Environmental Safety, 2008, 71(2): 328-340. (0)
[42]
Oranization for Economic Cooperation and Development.Guidance document for aquatic effect assessment[R].Paris:OECD, 1995. (0)
[43]
XUE Baoming, ZHANG Ruijie, WANG Yinghui, et al. Antibiotic contamination in a typical developing city in South China:occurrence and ecological risks in the Yongjiang River impacted by tributary discharge and anthropogenic activities[J]. Ecotoxicology and Environmental Safety, 2013, 92: 229-236. DOI:10.1016/j.ecoenv.2013.02.009 (0)
[44]
BACKHAUS T, SCHOLZE M, GRIMME L H. The single substance and mixture toxicity of quinolones to the bioluminescent bacterium Vibrio fischeri[J]. Aquatic Toxicology, 2000, 49(1/2): 49-61. (0)
[45]
徐浩, 肖湘波, 唐文浩, 等. 海口城区地表水环境中抗生素含量特征研究[J]. 环境科学与技术, 2013(9): 60-65.
XU Hao, XIAO Xiangbo, TANG Wenhao, et al. Concentration characteristics of antibiotics in urban aquatic environment of Haikou[J]. Environmental Science & Technology(China), 2013(9): 60-65. (0)
[46]
秦延文, 张雷, 时瑶, 等. 大辽河表层水体典型抗生素污染特征与生态风险评价[J]. 环境科学研究, 2015, 28(3): 361-368.
QIN Yanwen, ZHANG Lei, SHI Yao, et al. Contamination characteristics and ecological risk assessment of typical antibiotics in surface water of the Daliao River, China[J]. Research of Environmental Sciences, 2015, 28(3): 361-368. (0)
[47]
YANG Lihua, YING Guangguo, SU Haochang, et al. Growth-inhibiting effects of 12 antibacterial agents and their mixtures on the freshwater microalga Pseudokirchneriella subcapitata[J]. Environmental Toxicology & Chemistry, 2008, 27(5): 1201-1208. (0)