环境科学研究  2017, Vol. 30 Issue (7): 1105-1111  DOI: 10.13198/j.issn.1001-6929.2017.02.44

引用本文  

尹汉雄, 唐玉朝, 黄显怀, 等. 紫外光强化Fe(Ⅱ)-EDTA活化过硫酸盐降解直接耐酸大红4BS[J]. 环境科学研究, 2017, 30(7): 1105-1111.
YIN Hanxiong, TANG Yuchao, HUANG Xianhuai, et al. Decolorization Effect of Direct Fast Scarlet 4BS by Fe(Ⅱ)-EDTA Activated Peroxodisulfate under Ultraviolet Light[J]. Research of Environmental Sciences, 2017, 30(7): 1105-1111.

基金项目

国家自然科学基金项目(50908001);国家科技重大专项(2014ZX07405-003);安徽省教育厅自然科学重点项目(KJ2015A109)

责任作者

唐玉朝(1975-), 男, 安徽合肥人, 教授, 博士, 主要从事饮用水安全保障技术和污水深度处理研究, tangyc@ahjzu.edu.cn

作者简介

尹汉雄(1993-), 男, 安徽桐城人, yinhx170129@126.com

文章历史

收稿日期:2016-11-27
修订日期:2017-03-13
紫外光强化Fe(Ⅱ)-EDTA活化过硫酸盐降解直接耐酸大红4BS
尹汉雄 , 唐玉朝 , 黄显怀 , 薛莉娉 , 徐满天 , 胡伟 , 王涛     
安徽建筑大学, 水污染控制与废水资源化安徽省重点实验室, 安徽 合肥 230601
摘要:为探索硫酸根自由基对偶氮染料的降解能力,以直接耐酸大红4BS(下称大红4BS)为模拟污染物,通过UV/Fe(Ⅱ)-EDTA/PDS(PDS为过硫酸钠)体系,探讨了初始c(PDS)、Fe(Ⅱ)/EDTA(摩尔比)、无机盐阴离子等对大红4BS降解的影响.结果表明,大红4BS的脱色率随着初始c(PDS)的增加而增大,当c(PDS)超过15 mmol/L时无显著变化.Fe(Ⅱ)/EDTA比在5:1时效果最好,5 min时使0.038 0 mmol/L大红4BS的脱色率达到93.6%.反应符合二级动力学模型.HCO3-、Cl-、NO3-、SO42-等无机盐阴离子表现出明显抑制作用,c(无机盐阴离子)在100 mmol/L条件下,脱色率分别降低66.9%、13.2%、12.1%、9.43%.利用紫外可见光谱,依据其结构与特征吸收的关系,初步推测自由基离子对大红4BS降解的途径:苯环最先遭到破坏,随后偶氮键断裂、萘环开裂.研究显示,UV光可有效强化Fe(Ⅱ)-EDTA活化过硫酸盐形成SO4-·自由基,对偶氮染料具有很好的脱色能力,最佳反应条件[PDS:Fe(Ⅱ):EDTA(摩尔比)为15:5:1]下,大红4BS在10 min时脱色率高达98.1%.
关键词直接耐酸大红4BS    紫外    活化过硫酸盐    EDTA(乙二胺四乙酸)    螯合Fe(Ⅱ)    
Decolorization Effect of Direct Fast Scarlet 4BS by Fe(Ⅱ)-EDTA Activated Peroxodisulfate under Ultraviolet Light
YIN Hanxiong , TANG Yuchao , HUANG Xianhuai , XUE Liping , XU Mantian , HU Wei , WANG Tao     
Key Laboratory of Anhui Province of Water Pollution Control and Wastewater Reuse, Anhui Jianzhu University, Hefei 230601, China
Abstract: Wastewater containing azo dyes is difficult to be biodegraded because of its structural stability, which poses a serious threat to the environment. In order to study the degradation of azo dyes by SO4-·radicals, degradation of Direct Fast Scarlet 4BS with radicals activated by UV enhanced Fe(Ⅱ)-EDTA persulfate system was investigated. The effects of initial concentration of PDS, Fe(Ⅱ)/EDTA and inorganic anions on the degradation of 4BS in UV/Fe(Ⅱ)-EDTA/PDS system were discussed. The results showed that the 4BS decolorization rate increased with the increasing of PDS concentration, but there was no significant change when PDS was more than 15 mmol/L. At the most optimal Fe(Ⅱ)/EDTA ratio of 5:1, the 4BS could decolorize 93.6% within 5 min when the initial concentration was 0.0380 mmol/L. It followed the second-order kinetics model. The inorganic anions such as HCO3-, Cl-, NO3- and SO42- showed obviously negative effects for the degradation of 4BS when the inorganic anions were 100 mmol/L; decolorization ratio reduced 66.9%, 13.2%, 12.1% and 9.43%, respectively. The relationship between structure and characteristic absorption was analyzed by UV-Vis spectroscopy, and we speculated that the 4BS degradation pathway is as follows:Benzene is broken first, then azo bond cleaves and naphthalene ring cracks. In the presence of PDS-Fe(Ⅱ)-EDTA, the UV radiation could effectively enhance the activation of the persulfate to form SO4-·free radicals, which can decolorize Azo dyes. The decolorization ratio of 4BS was up to 98.1% within 10 min under the optimum reaction conditions[PDS:Fe(Ⅱ):EDTA=15:5:1] in the UV-PDS-Fe(Ⅱ)-EDTA system. The results suggested that the oxidation method based on SO4-·radicals may be a very effective technique to be used in the treatment of dye wastewater or other refractory wastewater.
Keywords: direct fast scarlet 4BS    ultraviolet    persulfate activation    ethylenediaminetetraacetic acid    chelated Fe(Ⅱ)    

染料生产时约有1%~20%会流失,从而进入染料废水,其中多数染料量大、难降解.直接染料具有致癌、致畸和致突变等毒害作用,其降解去除被广泛关注.基于·OH(羟基自由基)的高级氧化技术已经被广泛应用于染料废水处理.与·OH(1.9~2.7 V)相比[1],SO4-·具有更高的氧化还原电位(2.5~3.1 V)[2],并且降解有机化合物更具选择性[3-4].另外,在溶液中,SO4-·的存活期为3×10-5~4×10-5 s, 比·OH(2×10-8 s)高出3个数量级,因此,SO4-·有更长的时间与有机物反应[5].近些年,关于过硫酸盐氧化技术的研究也有很多. Park等[6]利用热活化过硫酸盐去除全氟辛酸铵,通过建模探讨了热活化的有效性;ZHAO等[7]研究表明,零价铁活化过硫酸盐能高效去除双酚A(BPA)和磷酸;WANG等[8]利用UV-C/PS(紫外活化/过硫酸盐)去除铜绿微囊藻,与单一的UV-C相比,UV-C/PS体系对藻类有机物矿化显著增强,在ρ(PS)为1 500 mg/L时,处理2 h便可去除98.2%的藻细胞,这些试验结果均得益于SO4-·的作用.

与单一的活化过硫酸盐方式相比,新型组合活化方式效果更加高效[9-12]. EDTA(乙二胺四乙酸)作为一种氨基多羧酸(APCAs),是一类包含多个羧基且羧基之间由氮原子连接的有机物酸[13],能与Fe(Ⅱ)/Fe(Ⅲ)形成稳定的,可溶于水的配合物,为铁离子提供保护的同时,通过自身的分解导致配位键的裂解,从而释放游离态铁离子进入反应,近些年被广泛用于水处理. NIU等[14]使用Fe(Ⅱ)-EDTA催化过硫酸盐作为微生物燃料电池的阴极,解决橙G脱色的同时也收获了电能;阳海等[15]也通过试验证明了Fe2+/EDTA/S2O82-体系对啶虫脒降解的可行性.

Fe(Ⅱ)-EDTA已被证实具有很好的光活性[16-17],其配合物与紫外光可以构成一个多相光体系,发生一系列复杂的光化学反应,并可以生成强氧化能力的自由基[18].该文研究了UV/Fe(Ⅱ)-EDTA/PDS(过硫酸钠)体系对直接耐酸大红4BS(下称大红4BS)的脱色效果,以期为染料废水的降解去除提供新的思路.

1 材料与方法 1.1 试剂与仪器

PDS(过硫酸钠)、FeSO4·7H2O、NaHCO3、NaCl、K2SO4、KNO3、NaOH,均为分析纯(AR),购于国药集团;EDTA、大红4BS,均为AR,购于天津市天力化学试剂有限公司.

紫外灯(协玉牌)、1 000 μL移液枪(北京博仪恒业科技发展有限公司)、六联磁力加热搅拌器(CJJ-931,江苏金城国胜试验仪器厂)、紫外可见分光光度计(T6新世纪,北京普析通用仪器有限责任公司)、紫外可见分光光度计(UV-1800,日本岛津公司).

1.2 试验方法

配置3.80 mmol/L大红4BS溶液作为储备液,试验时稀释为0.038 0 mmol/L,作为模拟印染废水.取100 mL稀释液于培养皿内,依次加入EDTA、FeSO4·7H2O、PDS溶液,置于254 nm波长紫外灯正下方,搅拌反应,得到UV/Fe(Ⅱ)-EDTA/PDS反应体系,c(EDTA)、c(FeSO4·7H2O)、c(PDS)分别为1、1、100 mmol/L,按照同样的投加方式得到PDS、Fe(Ⅱ)/PDS、UV/PDS、UV/Fe(Ⅱ)/PDS、Fe(Ⅱ)-EDTA/PDS各反应体系;在Fe(Ⅱ)/EDTA(摩尔比)对大红4BS脱色影响的试验中,c(EDTA)、c(PDS)分别为1、100 mmol/L,通过改变c〔Fe(Ⅱ)〕来改变Fe(Ⅱ)/EDTA,c(FeSO4·7H2O)分别为:8、5、2、1、0.2 mmol/L;初始c(PDS)对脱色影响的试验中,c(FeSO4·7H2O)、c(EDTA)分别为5、1 mmol/L,初始c(PDS)为5、10、15、25、50、75、100 mmol/L;讨论无机盐阴离子的影响时,c(无机盐阴离子)均为100 mmol/L,c(EDTA)、c(FeSO4·7H2O)、c(PDS)分别为1、5、15 mmol/L;大红4BS的紫外可见光谱扫描试验中,c(EDTA)、c(FeSO4·7H2O)、c(PDS)分别为1、5、15 mmol/L;每一定时间取样3 mL,置于紫外可见分光光度计UV-1800内,在504 nm波长处测吸光度;试验使用蒸馏水配液;溶液的pH均未作任何调整;常温下进行反应.

2 结果与讨论 2.1 UV/Fe(Ⅱ)-EDTA/PDS体系降解大红4BS的有效性

图 1可见,PDS的氧化性不能使大红4BS脱色,通过对PDS采用不同的活化方式,大红4BS在前10 min内均可被快速去除,随后反应趋于缓慢,这在相关研究[19-20]中也有所体现. Fe(Ⅱ)/PDS的脱色率为69.9%,UV/PDS的脱色率为66.6%,UV/Fe(Ⅱ)/PDS的脱色率为75.8%,说明组合活化方式效果更加高效.但对Fe(Ⅱ)进行EDTA螯合后发现,加入EDTA使大红4BS脱色率降低了24.7%,究其原因:① 试验中Fe(Ⅱ)/EDTA为1:1,EDTA完全螯合Fe(Ⅱ),溶液中无游离的Fe(Ⅱ)参与反应,导致大红4BS脱色率降低[21];② 同HAN等[22]螯合Fe(Ⅱ)活化PDS降解橙G的结果一致,在反应的前45 min内,未经螯合的产生了更好的效果.但是在UV存在时对Fe(Ⅱ)进行EDTA螯合后发现,UV的存在使大红4BS脱色率提高了35.6%. UV一方面起到了协同活化的作用(S2O82-+hv→2SO4-·)[23];另一方面,EDTA螯合Fe(Ⅱ)后形成的配合物具有很好的光活性,与UV可以构成一个多相光体系,通过光化学反应生成强氧化能力的自由基,对大红4BS高效去除,体现出UV对活化的巨大贡献[18].可见,UV/Fe(Ⅱ)-EDTA/PDS体系降解大红4BS十分有效.

注: C0为初始c(大红4BS),mol/L;Ctt时刻c(大红4BS),mol/L.下同. 图 1 不同反应体系对大红4BS的降解 Figure 1 4BS degradation by different reaction systems
2.2 Fe(Ⅱ)/EDTA对大红4BS脱色的影响

图 2可见,随着Fe(Ⅱ)/EDTA的增大,大红4BS的脱色率呈先增后减的趋势,这是由于在Fe(Ⅱ)与EDTA螯合比一定时,PDS被活化生成SO4-·,一部分直接参与大红4BS的脱色降解;另一部分与H2O或OH-反应,生成·OH后对大红4BS氧化降解〔见式(1)(2)(3)〕.但当螯合比超过一定量时,未螯合的Fe(Ⅱ)会争夺新生的自由基离子,Fe(Ⅱ)同SO4-·和·OH均能发生淬灭反应〔见式(4)(5)〕,消耗溶液中SO4-·和·OH,使大红4BS脱色率降低[24-27].

Fe(Ⅱ)/EDTA:1-8:1;2-5:1;3-2:1;4-1:1;5-1:5. 图 2 不同Fe(Ⅱ)/EDTA比对大红4BS降解的影响 Figure 2 Effect of Fe(Ⅱ)/EDTA ratios on the 4BS
$\text{S}_2 \text{O}_8^{2-} +\text{Fe}^{2+} \to \text{SO}_4^{-} \cdot +\text{SO}_4^{2-} +\text{Fe}^{3+}$ (1)
$\text{SO}_4^{-} \cdot +\text{H}_2\text{O} \to \text{HSO}_4^{-} +\cdot \text{OH}$ (2)
$\text{SO}_4^{-} \cdot +\text{OH}^{-} \to \text{SO}_4^{2-} +\cdot \text{OH}$ (3)
$\text{Fe}^{2+} + \text{SO}_4^{-} \cdot \to \text{Fe}^{3+} + \text{SO}_4^{2-}$ (4)
$\text{Fe}^{2+} + \cdot \text{OH} \to \text{OH}^{-} +\text{Fe}^{3+}$ (5)

Fe(Ⅱ)/EDTA=5:1时,配合物达到最优螯合比与光活性,5 min时脱色率即达到92.6%.究其原因,EDTA是一种带有6个配位基的强螯合剂,包括2个氮原子和4个羧基配位基,与Fe(Ⅱ)螯合时,形成2个O-C-C-N-Fe五元环,1个N-C-C-N-Fe五元环和2个O-C-C-C-N-Fe六元环. Han等[22]研究也表明,在Fe(Ⅱ)/EDTA=5:1时,Fe(Ⅱ)得到有效保护和释放,溶液中始终保持较高氧化还原电位和较高的c〔Fe(Ⅱ)〕,促进反应的进行.

2.3 初始c(PDS)对UV/Fe(Ⅱ)-EDTA/PDS体系降解大红4BS的影响

不同初始c(PDS)下大红4BS的降解结果如图 3所示.由图 3可见,随着初始c(PDS)的增大,大红4BS的脱色率不断增大. 4 min时脱色率分别为58.8%、73.9%、85.3%、88.8%、91.0%、91.2%、91.8%.初始c(PDS)在15 mmol/L以内时,初始c(PDS)是决定大红4BS脱色的主要因素.但当初始c(PDS)超过15 mmol/L时,大红4BS脱色率变化减小. PDS是UV/Fe(Ⅱ)-EDTA/PDS体系生成自由基的主要来源,理论上初始c(PDS)越高,自由基生成越多.但自由基过多时会相互发生反应而淬灭〔见式(1)(2)(3)(6)(7)(8)〕[4-5, 25-26, 28].另外,于辉等[29]利用Fe2+活化PDS降解活性艳蓝KN-R时也发现,当c(PDS)过高时,PDS会与SO4-·发生反应,从而抑制活性艳蓝KN-R的降解.

初始c(PDS)/(mmol/L):1-5;2-10;3-15;4-25;5-50;6-75;7-100. 图 3 不同初始c(PDS)对大红4BS降解的影响 Figure 3 Effect of initial PDS concentrations on the 4BS degradation
$\cdot \text{OH} + \cdot \text{OH} = \text{H}_2 \text{O}_2$ (6)
$\text{SO}_4^{-} \cdot +\text{SO}_4^{-} \cdot = \text{S}_2 \text{O}_8^{2-}$ (7)
$\cdot \text{OH} + \text{SO}_4^{-} \cdot = \text{HSO}_5^{-}$ (8)
2.4 UV/Fe(Ⅱ)-EDTA/PDS体系降解大红4BS的反应动力学

为了探究UV/Fe(Ⅱ)-EDTA/PDS体系降解大红4BS的反应动力学,分别在不同Fe(Ⅱ)/EDTA和不同初始c(PDS)下进行试验,并对结果进行拟一级动力学〔见式(9)〕和拟二级动力学〔见式(10)〕模拟.拟动力学曲线如图 4所示.

图 4 UV/Fe(Ⅱ)-EDTA/PDS体系降解大红4BS的拟二级动力学曲线 Figure 4 Pseudo-second order kinetics curve of 4BS degradation under UV/Fe(Ⅱ)-EDTA/PDS system
$-\ln (C_t / C_0) = K_{\rm{obs1}}t$ (9)
$1/C_t - 1/C_0 = K_{\rm{obs2}}t$ (10)

式中:Kobs1为拟一级反应动力学常数,s-1Kobs2为拟二级反应动力学常数, L/(mol·s).

表 1可见,在Fe(Ⅱ)/EDTA=1:1和Fe(Ⅱ)/EDTA=5:1时,拟二级动力学模型都能够更好地描述UV/Fe(Ⅱ)-EDTA/PDS体系降解大红4BS的过程.

表 1 不同条件下UV/Fe(Ⅱ)-EDTA/PDS体系降解大红4BS的速率常数 Table 1 The rate constants of 4BS degradation by UV/Fe(Ⅱ)-EDTA/PDS under different conditions
2.5 无机盐阴离子对UV/Fe(Ⅱ)-EDTA/PDS体系降解大红4BS的影响

印染废水中HCO3-、Cl-、NO3-、SO42-等无机盐阴离子含量均较高[30],通过外源投加的方式考察无机盐阴离子对UV/Fe(Ⅱ)-EDTA/PDS体系的影响.由图 5可见,对于UV/Fe(Ⅱ)-EDTA/PDS体系,在没有加入无机盐阴离子的情况下,5 min时脱色率即达到92.6%,而在加入HCO3-、Cl-、SO42-、NO3-等无机盐阴离子时,对体系均产生不同程度的抑制作用,脱色率分别降低66.9%、13.2%、12.1%、9.43%,无机盐阴离子的影响显示为:HCO3->Cl->NO3->SO42-.

图 5 不同无机盐阴离子对大红4BS降解的影响 Figure 5 Effect of inorganic anions on the 4BS degradation

HCO3-是强有力的自由基清除剂,能与·OH和SO4-·发生反应〔见式(11)(12)〕,反应速率常数(k)分别为1×107和9.1×106 M-1s-1[31],反应使溶液中自由基离子大量减少,生成的CO3-·虽然具有相对高的氧化还原电位(Eh=1.78 V,pH=7),但CO3-·是一种具有选择性并短暂存在的自由基,不利于大红4BS的脱色降解,导致大红4BS脱色率快速降低[32]. Cl-在废水中广泛存在,在UV/Fe(Ⅱ)-EDTA/PDS体系中被OH·和SO4-·氧化成Cl·和ClO·〔见式(13)~(15)〕[33],不仅消耗了体系中的自由基离子,而且其低活性也影响了大红4BS降解,相关报道也证实了Cl-的抑制作用[34-35]. NO3-的加入使大红4BS脱色率下降12.1%,这主要因为NO3-能够与自由基通过电子转移作用而发生反应〔见式(16)〕,生成弱氧化能力的NO3·[36].周骏等[33]实验也表明,NO3-对活化过硫酸盐降解硝基氯酚起抑制作用,并且随着c(NO3-)的增大,高离子强度会导致活性物质反应性降低,使降解能力下降. SO42-也对体系降解起抑制作用,使脱色率降低9.43%.因此,无机盐阴离子对UV/Fe(Ⅱ)-EDTA/PDS体系降解大红4BS均产生抑制作用,并且表现为HCO3->Cl->NO3->SO42-.

$\text{HCO}_3^{-} + \cdot\text{OH} \to \text{CO}_3^{-}\cdot + \text{OH}^{-} + \text{H}^{+}$ (11)
$\text{HCO}_3^{-} + \text{SO}_4^{-}\cdot \to \text{CO}_3^{-}\cdot + \text{SO}_4^{2-} + \text{H}^{+}$ (12)
$\text{Cl}^{-} + \cdot \text{OH} \leftrightarrow \text{ClOH}^{-}\cdot$ (13)
$\text{ClOH}^{-}\cdot + \text{H}^{+} \to \text{ClO}\cdot + \text{H}_2 \text{O}$ (14)
$\text{Cl}^{-} + \text{SO}_4^{-}\cdot \leftrightarrow \text{SO}_4^{2-}+\text{Cl}\cdot$ (15)
$\text{SO}_4^{-}\cdot + \text{NO}_3^{-} \to \text{SO}_4^{2-} + \text{NO}_3\cdot$ (16)
2.6 UV/Fe(Ⅱ)-EDTA/PDS体系降解大红4BS的紫外可见光谱

大红4BS结构如图 6所示,分子中含有2个偶氮键和3个非偶氮结构的氮原子, 大红4BS颜色由发色基团偶氮基—NN—引起, 发色体是萘基偶氮基, 助色团—OH起深色作用, 而—SO3Na给予大红4BS水溶性和蛋白质纤维亲和力[37].通过分光光度计对大红4BS进行200~700 nm扫描,结果如图 7所示,大红4BS有3个吸收峰:在504 nm有最大吸收峰,这是由偶氮键与整个分子形成的大共轭体系的电子跃迁产生的;2 min时,由苯环共轭双键在242.5 nm引起的特征峰消失;4 min时,由偶氮键在504 nm处形成的特征峰消失;20 min时,由萘环在306 nm处形成的特征峰尚没有完全消失;表明在UV/Fe(Ⅱ)-EDTA/PDS体系降解大红4BS过程中,自由基对大红4BS的攻击是各个方向的,苯环最容易破坏,随后偶氮键断裂、萘环开裂[38].

图 6 大红4BS结构 Figure 6 The structure of 4BS

图 7 大红4BS紫外可见扫描图谱 Figure 7 UV-visible scanning patterns of 4BS

在试验过程中,大红4BS偶氮键发生20.5 nm的紫移,这说明染料分子中有给电子性质的助色基团脱落(如磺酸基), 使得包含发色基团的大共轭体系变小, 生色基上的电子云密度下降, π与π*轨道间能级差(ΔE)变大, 从而引起最大吸收波长向短波方向移动[38].

3 结论

a) UV/Fe(Ⅱ)-EDTA/PDS体系对大红4BS的降解是高效的,初始c(PDS)对大红4BS降解在一定范围内影响明显,但不宜过高.

b) 对于UV/Fe(Ⅱ)-EDTA/PDS体系,在Fe(Ⅱ)/EDTA=5:1时,配合物达到最优螯合比与光活性,反应5 min即可使大红4BS的脱色率达到92.6%.

c) UV/Fe(Ⅱ)-EDTA/PDS体系降解大红4BS符合二级反应动力学.

d) 无机盐阴离子对UV/Fe(Ⅱ)-EDTA/PDS体系降解大红4BS起抑制作用,HCO3-、Cl-、SO42-、NO3-分别使大红4BS脱色率降低66.9%、13.2%、12.1%、9.43%,因此,在处理染料废水之前对弄清楚其中成分是至关重要的.

e) UV/Fe(Ⅱ)-EDTA/PDS体系对大红4BS降解时,自由基离子对大红4BS的攻击是各个方向的,苯环最先遭到破坏,随后偶氮键断裂、萘环开裂.

参考文献
[1]
BUXTON G V, GREENSTOCK C L, HELMAN W P, et al. Critical view of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O-) in aqueous solution[J]. Journal of Physical Chemical Reference Data, 1988, 17(2): 513-886. DOI:10.1063/1.555805 (0)
[2]
NETA P, HUIE R E, ROSS A B. Rate constants for reactions of inorganic radicals in aqueous solution[J]. National Bureau of Stan, 1979, 17(3): 1027-1284. (0)
[3]
TORRES-LUNA J R, OCAMPO-PEREZ R, SANCHEZ-POLO M, et al. Role of HO·and SO4·radicals on the photodegradation of remazol red in aqueous solution[J]. Chemical Engineering Journal, 2013, 223: 155-163. DOI:10.1016/j.cej.2013.02.127 (0)
[4]
MENDEZ-DIAZ J, SANCHEZ-POLO M, RIVERA-UTRILLA J, et al. Advanced oxidation of the surfactant SDBS by means of hydroxyl and sulphate radicals[J]. Chemical Engineering Journal, 2010, 163(3): 300-306. DOI:10.1016/j.cej.2010.08.002 (0)
[5]
LIN Heng, WU Jie, ZHANG Hui. Degradation of bisphenol A in aqueous solution by a novel electro/Fe3+/peroxydisulfate process[J]. Separation and Purification Technology, 2013, 117(4): 18-23. (0)
[6]
PARK S, LEE L S, MEDINA V F, et al. Heat-activated persulfate oxidation of PFOA, 6:2 fluorotelomer sulfonate, and PFOS under conditions suitable for in-situ groundwater remediation[J]. Chemosphere, 2016, 145: 376-383. DOI:10.1016/j.chemosphere.2015.11.097 (0)
[7]
ZHAO Li, JI Yuefei, KONG Deyang, et al. Simultaneous removal of bisphenol A and phosphate in zero-valent iron activated persulfate oxidation process[J]. Chemical Engineering Journal, 2016, 303: 458-466. DOI:10.1016/j.cej.2016.06.016 (0)
[8]
WANG Zongping, CHEN Yiqun, XIE Pengchao, et al. Removal of Microcystis aeruginosa by UV-activated persulfate:performance and characteristics[J]. Chemical Engineering Journal, 2016, 300: 245-253. DOI:10.1016/j.cej.2016.04.125 (0)
[9]
GHANBARI F, MORADI M, GOHARI F. Degradation of 2, 4, 6-trichlorophenol in aqueous solutions using peroxymonosulfate/activated carbon/UV process via sulfate and hydroxyl radicals[J]. Journal of Water Process Engineering, 2016, 9: 22-28. DOI:10.1016/j.jwpe.2015.11.011 (0)
[10]
YAO Yunjin, CAI Yunmu, WU Guodong, et al. Sulfate radicals induced from peroxymonosulfate by cobalt manganese oxides (CoxMn3-xO4) for Fenton-like reaction in water[J]. Journal of Hazardous Materials, 2015, 296: 128-137. DOI:10.1016/j.jhazmat.2015.04.014 (0)
[11]
WANG Yuxian, SUN Hongqi, ANG Haming, et al. Magnetic Fe3O4/carbon sphere/cobalt composites for catalytic oxidation of phenol solutions with sulfate radicals[J]. Chemical Engineering Journal, 2014, 245(6): 1-9. (0)
[12]
PATIL N N, SHUKLA S R. Degradation of reactive yellow 145 dye by persulfate using microwave and conventional heating[J]. Journal of Water Process Engineering, 2015, 7: 314-327. DOI:10.1016/j.jwpe.2015.08.003 (0)
[13]
孙家寿. 含有氨基多羧酸与金属离子的络合物废液的处理方法[J]. 环境与可持续发展, 1985(3): 16. (0)
[14]
NIU Chenggang, WANG Ying, ZHANG Xuegang, et al. Decolorization of an azo dye orange G in microbial fuel cells using Fe(Ⅱ)-EDTA catalyzed persulfate[J]. Bioresource Technology, 2012, 126(126C): 101-106. (0)
[15]
阳海, 黎源, 徐淼, 等. Fe2+/S2O82-/EDTA体系中自由基离子对啶虫脒的氧化降解[J]. 环境科学研究, 2014, 27(3): 321-327.
YANG Hai, LI Yuan, XU Miao, et al. Chemical oxidation degradation of acetamiprid by radical ions in Fe2+/S2O82-/EDTA aqueous solution[J]. Research of Environmental Sciences, 2014, 27(3): 321-327. (0)
[16]
TROTT T, HENWOOD R W, LANGFORD C H. Sunliight photochemistry of ferric nitrilotriacetate complexes[J]. Environmental Science & Technology, 1972, 6(4): 367-368. (0)
[17]
NATARAJAN P, ENDICOTT J F. Photoredox behavior of transition metal-ethylenediaminetetraacetate complexes, comparison of some Group Ⅷ metals[J]. The Journal of Physical Chemistry, 1973, 77(17): 2049-2054. DOI:10.1021/j100636a004 (0)
[18]
邓南圣, 吴峰. 环境光化学[M]. 北京: 北京化学工业出版社, 2003, 83-97. (0)
[19]
XIE Pengchao, MA Jun, LIU Wei, et al. Removal of 2-MIB and geosmin using UV/persulfate:contributions of hydroxyl and sulfate radicals[J]. Water Research, 2015, 69: 223-233. DOI:10.1016/j.watres.2014.11.029 (0)
[20]
ORELLANA-GARCIA F, ALVAREZ M A, LOPEZ-RAMON M V, et al. Effect of·OH, SO4· and CO3-·/HCO3· radicals on the photodegradation of the herbicide amitrole by UV radiation in aqueous solution[J]. Chemical Engineering Journal, 2015, 267: 182-190. DOI:10.1016/j.cej.2015.01.019 (0)
[21]
HAN Donghui, WAN Jinquan, MA Yongwen, et al. New insights into the role of organic chelating agents in Fe(Ⅱ) activated persulfate processes[J]. Chemical Engineering Journal, 2015, 269: 425-433. DOI:10.1016/j.cej.2015.01.106 (0)
[22]
HAN Donghui, WAN Jinquan, MA Yongwen, et al. Enhanced decolorization of Orange G in a Fe(Ⅱ)-EDDS activated persulfate process by accelerating the regeneration of ferrous iron with hydroxylamine[J]. Chemical Engineering Journal, 2014, 256(6): 316-323. (0)
[23]
郭佑罗, 关小红, 高乃云, 等. 紫外/过硫酸盐工艺降解水中氯贝酸的研究[J]. 中国环境科学, 2016, 36(7): 2014-2019.
GUO Youluo, GUAN Xiaohong, GAO Naiyun, et al. Kinetics of clofibric acid degradation by UV/persulfate system in aqueous solution[J]. China Environmental Science, 2016, 36(7): 2014-2019. (0)
[24]
MOSTOFA K M G, SAKUGAWA H. Simultaneous photoinduced generation of Fe2+and H2O2 in rivers:an indicator for photo-Fenton reaction[J]. Journal of Environmental Sciences, 2016, 47: 34-38. DOI:10.1016/j.jes.2015.12.020 (0)
[25]
VICENTE F, SANTOS A, ROMERO A, et al. Kinetic study of diuron oxidation and mineralization by persulphate:effects of temperature, oxidant concentration and iron dosage method[J]. Chemical Engineering Journal, 2011, 170(1): 127-135. DOI:10.1016/j.cej.2011.03.042 (0)
[26]
HAYON E, TREININ A, WILF J. Electronic spectra, photochemistry, and autoxidation mechanism of the sulfite-bisulfitepyrosulfite systems SO2-, SO3-, SO4- and SO5- radicals[J]. Journal of the American Chemical Society, 1972, 94(1): 47-57. DOI:10.1021/ja00756a009 (0)
[27]
CHEN R, PIGNATELLO J J. Role of quinone intermediates as electron shuttles in Fenton and photo assisted Fenton oxidations of aromatic compounds[J]. Environmental Science & Technology, 1997, 31(8): 2399-2406. (0)
[28]
王琰涤, 吕树光, 顾小钢, 等. EDDS螯合Fe(Ⅲ)活化过硫酸盐技术对TCE的降解效果[J]. 环境科学研究, 2015, 28(11): 1728-1733.
WANG Yandi, LV Shuguang, GU Xiaogang, et al. The degradation performance of trichloroethylene by means of Fe(Ⅲ)-EDDS activated persulfate process[J]. Research of Environmental Sciences, 2015, 28(11): 1728-1733. (0)
[29]
于辉, 金春姬, 王鹏远, 等. Fe2+与Fe0活化过二硫酸盐降解活性艳蓝KN-R[J]. 环境科学研究, 2015, 28(1): 88-95.
YU Hui, JIN Chunji, WANG Pengyuan, et al. Degradation of reactive brilliant blue KN-R by persulfate activated with Fe2+ and Fe0[J]. Research of Environmental Sciences, 2015, 28(1): 88-95. (0)
[30]
MEDELLIN-CASTILLO N A, OCAMPO-PEREZ R, LEYVA-RAMOS R, et al. Removal of diethyl phthalate from water solution by adsorption, photo-oxidation, ozonation and advanced oxidation process(UV/H2O2, O3/H2O2 and O3/activated carbon)[J]. Science of the Total Environment, 2013, 442(1): 26-35. (0)
[31]
LUTZE H V, KERLIN N, SCHMIDT T C. Sulfate radical-based water treatment in presence of chloride:formation of chlorate, interconversion of sulfate radicals into hydroxyl radicals and influence of bicarbonate[J]. Water Research, 2015, 72: 349-360. DOI:10.1016/j.watres.2014.10.006 (0)
[32]
SANCHEZ-POLO M, ABDEL DAIEM M M, OCAMPO-PEREZ R, et al. Comparative study of the photodegradation of bisphenol A by HO·, SO4-· and CO3-·/HCO3-·radicals in aqueous phase[J]. Science of the Total Environment, 2013, 463/464: 423-431. DOI:10.1016/j.scitotenv.2013.06.012 (0)
[33]
周骏, 肖九花, 方长玲, 等. UV/PMS体系硝基氯酚降解动力学及机理研究[J]. 中国环境科学, 2016, 36(1): 66-73.
ZHOU Jun, XIAO Jiuhua, FANG Changling, et al. Degradation kinetics and mechanisms of chloronitrophenol in UV/PMS system[J]. China Environmental Science, 2016, 36(1): 66-73. (0)
[34]
DENG Jing, SHAO Yisheng, GAO Naiyun, et al. Degradation of theantiepileptic drug carbamazepine upon different UV-based advanced oxidation processes in water[J]. Chemical Engineering Journal, 2013, 222(2): 150-158. (0)
[35]
CHAN K H, CHU W. Degradation of atrazine by cobalt-mediated activation of peroxymonosulfate:different cobalt counter anions in homogenous process and cobalt oxide catalysts in photolytic heterogeneous process[J]. Water Research, 2009, 43(43): 2513-2521. (0)
[36]
YUAN Ruixia, RAMJAUN S N, WANG Zhaohui, et al. Effects of chloride ion on degradation of Acid Orange 7 by sulfate radical based advanced oxidation process:implications for formation of chlorinated aromatic compounds[J]. Journal of Hazardous Materials, 2011, 196(1): 173-179. (0)
[37]
林玉满, 朱妍, 陈祖亮. 纳米Ni/Fe双金属去除水溶液中直接耐酸大红4BS的研究[J]. 安全与环境学报, 2011, 11(1): 51-55.
LIN Yuman, ZHU Yan, CHEN Zuliang. Removal of direct fast searlet 4BS from aqueous soluiton with nanoscale Ni/Fe bimetallic Particles[J]. Journal of Safety and Environmen, 2011, 11(1): 51-55. (0)
[38]
龚宜, 罗汉金, 韦朝海. 直接红染料的臭氧脱色与中间产物研究[J]. 环境工程学报, 2009, 3(3): 409-412.
GONG Yi, LUO Hanjin, WEI Chaohai. Ozonation mechanism and in term ediates of direct red B[J]. Chinese Journal of Environmental Engineering, 2009, 3(3): 409-412. (0)