环境科学研究  2018, Vol. 31 Issue (1): 130-135  DOI: 10.13198/j.issn.1001-6929.2017.03.39

引用本文  

安继斌, 夏春秋, 陈红宇, 等. UVA/Fe3O4活化过硫酸盐降解阿特拉津[J]. 环境科学研究, 2018, 31(1): 130-135.
AN Jibin, XIA Chunqiu, CHEN Hongyu, et al. Activation of Persulfate by Irradiated Magnetite: Implications for Abatement of Atrazine in Aqueous Solution[J]. Research of Environmental Sciences, 2018, 31(1): 130-135.

基金项目

国家自然科学基金项目(21507007);重庆市教委科学技术研究项目(KJ1501110);重庆文理学院引进人才项目(R2015CH09)
Supported by National Natural Science Foundation of China (No.21507007); Scientific Research Fund of Chongqing Municipal Education Commission, China (No.KJ1501110); Foundation of Chongqing University of Arts and Sciences (No.R2015CH09)

责任作者

作者简介

安继斌(1984-), 男, 甘肃景泰人, 讲师, 博士, 主要从事有机污染物治理技术及水资源保护研究, anjibin99@126.com

文章历史

收稿日期:2017-05-27
修订日期:2017-09-02
UVA/Fe3O4活化过硫酸盐降解阿特拉津
安继斌 , 夏春秋 , 陈红宇 , 胡代鹏     
重庆文理学院, 环境材料与修复技术重庆市重点实验室, 重庆 402160
摘要:为了解SO4-·(硫酸根自由基)对阿特拉津的降解能力,以Fe3O4为K2S2O8活化试剂,以阿特拉津为研究目标污染物,运用UVA/Fe3O4/K2S2O8体系系统探讨阿特拉津在不同环境因素下的降解过程,并对催化剂的稳定性和重复利用进行了考察.结果表明:UVA/Fe3O4可以有效活化K2S2O8来降解阿特拉津,最佳c(K2S2O8)为1 mmol/L,反应6 h阿特拉津降解率可达到90%.淬灭试验表明,SO4-·是该体系中的主要活性物种,贡献率约为96%;HO·的作用比较弱.初始pH为3时,阿特拉津6 h的降解率为98%,总铁的溶出量达到0.9 mg/L;而初始pH为7时,体系对阿特拉津的降解率达到85%,基本没有总铁的溶出,表现出了一定的稳定性.在腐殖酸存在的条件下,UVA/Fe3O4/K2S2O8体系对阿特拉津的降解效果优于UVA/Fe3O4/H2O2体系.对Fe3O4催化剂进行3次循环测试,阿特拉津的降解率分别为90%、89%和86%.研究显示,UVA/Fe3O4能用于活化K2S2O8的高级氧化体系中,可有效降解除草剂阿特拉津.
关键词阿特拉津    四氧化三铁    硫酸根自由基    活性物种    
Activation of Persulfate by Irradiated Magnetite: Implications for Abatement of Atrazine in Aqueous Solution
AN Jibin , XIA Chunqiu , CHEN Hongyu , HU Daipeng     
Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, Chongqing University of Arts and Sciences, Chongqing 402160, China
Abstract: Chlorotriazine Pesticides in aquatic environments raise an emerging environmental risk, providing a new challenge to sewage and drinking water treatment systems. In order to study the degradation of typical herbicides by sulfate radicals, magnetite activated persulfate was applied to abetment of atrazine under UVA irradiation. The effects of various parameters such as concentration of persulfate and pH value on degradation kinetics were studied. The stability and recyclability of catalyst were also investigated. The results indicated that atrazine can be effectively degraded by magnetite in presence of persulfate under UVA irradiation. After 6 h reaction, the degradation efficiency of atrazine was 90% at the optimal c(K2S2O8) of 1 mmol/L. The test results of scavengers reveal that SO4-· is responsible for the major degradation of atrazine, and its contribution is about 96%, while HO· provides a minor contribution to the degradation. For pH 3 the degradation efficiency of atrazine was 98%, and the release of dissolved total Fe was 0.9 mg/L, while at pH 7 the degradation efficiency of atrazine was 85% and without release of iron during the activate tests. The UVA/Fe3O4/K2S2O8 system was superior to the corresponding UVA/Fe3O4/H2O2 in the presence of natural organic matter. In three cycles runs, the degradation efficiency of atrazine was 90%, 89% and 86%, respectively. Therefore, the UVA/Fe3O4 was successfully applied for the activate of K2S2O8, which can effectively remove atrazine.
Keywords: atrazine    magnetite    sulfate radical    reactive oxygen species    

阿特拉津(atrazine,结构式见图 1),又名莠去津,是一种被长期广泛使用的三嗪类除草剂[1].由于阿特拉津具有水溶性强、结构稳定和不易生物降解等特性,导致被其污染的土壤经雨水的冲刷可能造成地表和地下水的污染[2-3].进入水环境中的阿特拉津可引起雄蛙雌化,美国、欧盟和日本均已将其列入内分泌干扰化合物名单.此外,阿特拉津也被认为是对人类具有潜在致癌风险的化合物[4].因此,研究环境水体中阿特拉津的削减方式具有重要意义.

图 1 阿特拉津的结构式 Fig.1 The structure of Atrazine

近年来,SO4-·(硫酸根自由基)原位化学氧化法被广泛用于处理地表水体和土壤中的污染物[5-9],SO4-·的氧化还原电位为2.5~3.1 V[10],与·OH的氧化还原电位(1.8~2.7 V)相当[11],强氧化能力使其能够有效削减卤代类有机污染物并对其进行矿化,是一种被认为可以替代·OH的高级氧化法.一般,过硫酸盐受到热、碱、过渡金属离子或紫外辐射等活化可生SO4-·单电子氧化剂[12-16].其中,过渡金属离子活化的方法被认为是最简洁有效的,不需要额外的能量和化学试剂消耗,并且这种活化方式的机理与经典的芬顿反应类似,涉及到金属离子氧化还原的循环过程[6],因此一般也称为SO4-·类芬顿反应.目前Fe2+是活化过硫酸盐一种常用的选择[17-19],但Fe2+的快速氧化及生成氢氧化物沉淀的性质严重影响了其活性.为提高其活性,使用络合剂来避免Fe3+沉淀,促使Fe3+向Fe2+转化的循环[20].也有报道称Fe3+接收紫外辐射可以作为一种Fe2+的来源[21].此外,含铁矿物及铁离子修饰的黏土也可以作为铁源来活化过硫酸盐[22-23].但是,如何避免这些金属离子对水体环境的二次污染是我们所面临的新问题.

大量存在于自然环境中的Fe3O4是一种稳定的混合价态的氧化物,其Fe2+、Fe3+所占比例一般在0.30~0.43之间,同时,Fe3O4具有方便回收的优点.因此,该文考虑以Fe3O4为过硫酸盐活化试剂,以阿特拉津为研究目标污染物,运用UVA/Fe3O4活化过硫酸盐的方式系统探讨阿特拉津在不同环境因素下的降解过程,着重考察不同活性物种对阿特拉津降解的贡献,来阐述阿特拉津的降解机制,以期为进一步了解典型除草剂的环境行为,及评估其环境风险提供更多的基础数据.

1 材料与方法 1.1 试验材料

阿特拉津(≥99%)购于东京化成工业株式会社(Tokyo Chemical Industry, TCI),腐殖酸购于美国Sigma公司;甲醇为色谱级,三氯化铁、乙二醇、乙酸钠、硫酸亚铁铵六水合物、硫酸铁(Ⅲ)铵十二水合物、硫代硫酸钠等均为分析纯.

1.2 磁性纳米Fe3O4制备

采用溶剂热法制备磁性Fe3O4[24],具体过程:将三氯化铁(1.35 g)和乙酸钠(3.60 g)溶解于50 mL乙二醇溶液中,待溶液分散均匀呈黄色后,将其转入聚四氟乙烯反应釜中,在200 ℃下反应8 h.冷却至室温后,用乙醇清洗黑色的样品6次,然后用磁铁收集所制备的磁性纳米颗粒并在室温下真空干燥,备用.制得的Fe3O4用X射线衍射仪进行表征(见图 2),将其XRD图谱与标准物质(磁性Fe3O4的卡片号为19-0629)及文献[25]对照,可以确定为磁性Fe3O4.同时,用6 mol/L的盐酸溶解制备的Fe3O4,测定了其中ρ(Fe2+)和ρ(总铁),得到Fe2+/Fe3+(质量比)为0.37.

图 2 磁性Fe3O4的XRD图谱 Fig.2 XRD pattern of Fe3O4
1.3 试验方法

取50 mL的阿特拉津溶液(100 μmol/L)于125 mL的透明试剂瓶中,加入125 mg的Fe3O4,避光温和搅拌30 min后,打开紫外灯并立即加入K2S2O8(2 mmol/L)开始计时,在一定时间间隔取样2.0 mL并立即加入0.5 mL的硫代硫酸钠淬灭剂,然后用0.22 μm的水相滤膜过滤后用高效液相色谱分析.

1.4 分析方法

c(阿特拉津)采用Agilent1 220高效液相色谱分析,紫外检测器的波长为225 nm,色谱柱为Agilent Eclipse XDB-C18(150 mm×3.0 mm,3.5 μm),流动相的组成为70%的甲醇和30%的水(体积比),柱温为25 ℃,流动相流速为0.3 mL/min.

c(K2S2O8)的测定:配置试剂A(0.1 mol/L的邻苯二甲酸二氢钾)和试剂B〔0.40 mol/L KI,0.06 mol/L NaOH和0.000 1 mol/L (NH4)2MoO4〕各100 mL,取1.5 mL样品于5 mL的离心管中,加入0.75 mL试剂A和0.75 mL试剂B,反应60 min后,利用紫外分光光度计测定溶液在352 nm处的吸光度[26].

ρ(总铁)采用邻菲罗啉分光光度法测定.

2 结果与讨论 2.1 UVA/Fe3O4活化过硫酸盐降解阿特拉津

首先考察了不同体系(UV365、UV365+K2S2O8、Fe3O4+K2S2O8、UV365+Fe3O4+K2S2O8)降解阿特拉津的可行性.由图 3可见,UV365体系中,在光照6 h后,阿特拉津没有发生降解,表明其在365 nm的紫外光下比较稳定.在UV365+K2S2O8体系中,阿特拉津也没有发生降解,说明UV365不能活化K2S2O8产生SO4-·.在Fe3O4+K2S2O8体系中,阿特拉津6 h内的降解率不到10%,这主要是因为Fe3O4表面的Fe2+活化K2S2O8产生了SO4-·,从而对阿特拉津进行降解.而在UV365+Fe3O4+K2S2O8体系中,6 h内的阿特拉津降解率达到了90%,降解率的明显提高可能是有更多的Fe2+参与到了活化K2S2O8的反应.正如Iurascu等[23]也报道了紫外辐射能够促进Fe3O4表面Fe3+向Fe2+的转换,进而能够促进芬顿反应.

图 3 不同体系中阿特拉津的降解 Fig.3 The degradation of atrazine in the different processes
2.2 过氧化物浓度的影响

图 4可见,当c(K2S2O8)从0.5 mmol/L增至1.0 mmol/L时,阿特拉津的降解率有明显增加.这主要是因为随着c(K2S2O8)的增加,更多的K2S2O8参与了Fe3O4的活化反应,增加了SO4-·的产生,从而提高了阿特拉津的降解.而当c(K2S2O8)继续从1.0 mmol/L逐渐增至2.0 mmol/L时,阿特拉津的降解率几乎没有变化.这可能是因为在体系中Fe3O4物质量不变的情况下,过量的K2S2O8不影响体系中活性物种的产生.并且过量的K2S2O8没有提高阿特拉津的降解率,这也表明了强氧化性的过硫酸根与阿特拉津的反应活性较低.此外也有研究表明,过量的过硫酸根对SO4-·有粹灭的作用[13],这可能会抑制阿特拉津的降解反应.因此,后续试验中c(K2S2O8)选定为1 mmol/L.

c(K2S2O8)/(mmol/L):1—0.5;2—1.0;3—1.5;4—2.0. 图 4 c(K2S2O8)对阿特拉津降解动力学的影响 Fig.4 The effect of persulfate dosage on degradation kinetic of atrazine
2.3 不同活性氧物种贡献

UV365+Fe3O4+K2S2O8体系可产生SO4-·和·OH等活性物种[9],为了区分该体系中不同活性物种对降解阿特拉津的贡献,通过淬灭试验研究了它们对阿特拉津降解的影响.据报道,含有α氢原子的醇与·OH或SO4-·具有较高的反应速率,如乙醇与·OH的反应速率常数〔1.2×109~2.8×109 L/(mol·s)〕大约是其与SO4-·反应速率常数〔1.6×107~7.7×107 L/(mol·s)〕的50倍[10, 27];而不含α氢的叔丁醇与·OH的反应速率常数为3.8×108~7.6×108 L/(mol·s),大约是其与SO4-·反应速率常数〔4×105~9.1×105 L/(mol·s)〕的1 000倍[10-11],相比而言,·OH或SO4-·与阿拉特津的双分子反应速率常数比较近似,为3×109 L/(mol·s)-1[28].因此,基于以上反应速率常数考虑,含有α氢的乙醇可以作为辨别过硫酸根与·OH或SO4-·贡献的淬灭剂,而叔丁醇对阿特拉津降解效果的影响可以用来区分SO4-·与·OH贡献大小.而且预试验表明,过硫酸根与目标物之间基本不发生反应,所以研究醇类对阿特拉津降解的影响十分重要.

当在反应体系中加入2 mmol/L的叔丁醇时(与0.1 mmol/L的阿特拉津竞争),其对·OH淬灭效果约为80%,对SO4-·淬灭效果约为1%,剩余自由基可参与阿特拉津降解反应.因此如果·OH是阿特拉津降解的主要活性物种,淬灭约80%的·OH将会严重影响阿特拉津的降解效果.而由图 5显示的结果与该假设不一致,这充分表明·OH不是阿特拉津降解过程中的主要活性物种.继续将淬灭剂叔丁醇的浓度增至20 mmol/L时,其对·OH的淬灭效果可达到约98%,而对SO4-·淬灭效果可达到5%.此时,阿特拉津的降解效果较前组试验有一定的降低,进一步说明了·OH不是阿特拉津降解中的主要活性物种.当在体系中加入2 mmol/L的乙醇时,可以淬灭约90%的·OH和20%的SO4-·,阿特拉津的降解效果有明显降低;继续将淬灭剂乙醇浓度增至20 mmol/L时,基本可以淬灭99%的·OH,而对SO4-·的淬灭效果可提高到约70%.此时,阿特拉津的降解效果大幅降低,6 h时的阿特拉津降解率降低了80%,这充分表明SO4-·在阿特拉津的降解中有主导作用.

图 5 不同淬灭剂对阿特拉津降解动力学的影响 Fig.5 The effect of different scavengers on degradation kinetic of atrazine
2.4 溶液pH的影响

图 6可见,当溶液初始pH为3时,阿特拉津6 h的降解率可达到98%,Fe3O4中总铁的溶出量达到了0.9 mg/L;当溶液初始pH为7时,其降解率达到85%,而此时基本没有总铁的溶出.这表明Fe3O4在酸性条件下不够稳定,Minella等[29]研究的Fe3O4光芬顿反应试验中也发现,Fe3O4在中性条件下比酸性条件下稳定.酸性条件下溶解出铁离子能参与过硫酸盐的活化反应,从而加速阿特拉津的降解.这与中性条件下阿特拉津降解效果相比,增加的效果不是很高(不到15%).而且Fe3O4在中性条件没有铁离子的溶出,表明了其比较稳定.因此,可以认为,Fe3O4可以作SO4-·类芬顿反应的催化剂,并且能够在中性条件下有较好的活性,这比传统经典的芬顿反应具有较宽的pH使用范围.

pH:1—3;2—7. 图 6 溶液pH对铁离子溶出的影响 Fig.6 The effect of pH on the leaching of iron ion
2.5 与H2O2的对比试验

一般,溶解于水体中的天然有机质对HO·有很强的淬灭作用[30-31].因此,在自然环境水体中,基于S2O82-/SO4-·的硫酸根自由基高级氧化体系可能比基于H2O2/·OH的羟基自由基高级氧化体系具有更好的降解污染物的效果.相反,在有机质含量低的水体中,S2O82-体系的降解能力可能比H2O2体系弱.

配制ρ(腐殖酸)为20 mg/L的溶液模拟自然水体[32],对比UV365+Fe3O4活化的S2O82-/SO4-·和H2O2/·OH体系对阿特拉津的降解,结果如7所示.在UV365+Fe3O4+K2S2O8体系中,阿特拉津6 h的降解率达到了90%以上.而在UV365+Fe3O4+H2O2体系中,阿特拉津的降解率不到55%.也就是说,在腐殖酸的存在下,SO4-·比·OH体系对阿特拉津具有更好的降解效果.腐殖酸对该非均相的芬顿反应产生的·OH有很好的淬灭效果,相比对SO4-·氧化体系的影响不佳,而这也可能与SO4-·的选择性氧化有关[33].因此,针对天然水体中有机污染物的去除而言,SO4-·的高级氧化体系则更具有应用的价值.

图 7 UV365+Fe3O4+K2S2O8和UV365+Fe3O4+H2O2体系降解阿特拉津动力学 Fig.7 Comparison of degradation kinetic of atrazine in UV365+Fe3O4+K2S2O8 and UV365+Fe3O4+H2O2
2.6 循环测试试验

通过循环测试试验进一步考察了Fe3O4的催化活性,结果如图 8所示,当催化反应进行6 h时,3次循环试验中阿特拉津降解率分别为90%、89%和86%,变化不大,Fe3O4在每次的重复试验中都表现出了很好的催化活性,这说明Fe3O4能够比较稳定应用到活化过硫酸盐的高级氧化体系中.

图 8 Fe3O4催化活性的循环测试 Fig.8 Consecutive runs of the catalytic activity of Fe3O4 on atrazine removal efficiency
3 结论

a) UV/Fe3O4能够活化过硫酸盐产生SO4-·来降解阿特拉津,6 h的降解达到了90%以上.

b) 活性物种淬灭试验表明,SO4-·在阿特拉津的降解中有主导作用,贡献率约为96%,而·OH的作用比较弱.

c) 具有磁性的Fe3O4能够在中性条件对过硫酸盐有较好的活性,这比传统经典的芬顿反应具有较宽的pH使用范围.而且在天然水体中,SO4-·氧化体系的降解效果优于·OH氧化体系.

d) 在中性条件下,Fe3O4用于过硫酸盐的活化比较稳定,不存在铁离子的溶出,且具有方便回收重复使用的特点.

参考文献
[1]
GRAYMORE M, STAGNITTI F, ALLINSON G. Impacts of atrazine in aquatic ecosystems[J]. Environment International, 2001, 26(7/8): 483-495. (0)
[2]
JAYACHANDRAN K, STEINHEIMER T R, SOMASUNDARAM L, et al. Occurrence of atrazine and degradates as contaminants of subsurface drainage and shallow groundwater[J]. Journal of Environmental Quality, 1994, 23(2): 311-319. (0)
[3]
GUZZELLA L, POZZONI F, GIULIANO G. Herbicide contamination of surficial groundwater in Northern Italy[J]. Environmental Pollution, 2006, 142(2): 344-353. DOI:10.1016/j.envpol.2005.10.037 (0)
[4]
CHENG Chen, YANG Shaogui, GUO Yaping, et al. Photolytic destruction of endocrine disruptor atrazine in aqueous solution under UV irradiation:products and pathways[J]. Journal of Hazardous Materials, 2009, 172(2/3): 675-684. (0)
[5]
GUO Yaoguang, LOU Xiaoyiou, FANG Changling, et al. Novel photo-sulfite system:toward simultaneous transformations of inorganic and organic pollutants[J]. Environmental Science & Technology, 2013, 47(19): 11174-11181. (0)
[6]
LEE H S, KIM H I, WEON S, et al. Activation of persulfates by graphitized nanodiamonds for removal of organic compounds[J]. Environmental Science & Technology, 2016, 50(18): 10134-10142. (0)
[7]
JI Yuefei, FERRONATO C, SALVADOR A, et al. Degradation of ciprofloxacin and sulfamethoxazole by ferrous-activated persulfate:implications for remediation of groundwater contaminated by antibiotics[J]. Science of the Total Environment, 2014, 472(10): 800-808. (0)
[8]
GUAN Yinghong, MA Jun, LI Xuchun, et al. Influence of pH on the formation of sulfate and hydroxyl radicals in the UV/peroxymonosulfate system[J]. Environmental Science & Technology, 2011, 45(21): 9308-9314. (0)
[9]
DENG Yang, EZYSKE C M. Sulfate radical-advanced oxidation process (SR-AOP) for simultaneous removal of refractory organic contaminants and ammonia in landfill leachate[J]. Water Research, 2011, 45(18): 6189-6194. DOI:10.1016/j.watres.2011.09.015 (0)
[10]
NETA P, HUIE R E, ROSS A B. Rate Constants for reactions of inorganic radicals in aqueous solution[J]. Journal of Physical and Chemical Reference Data, 1988, 17(3): 1027-1084. DOI:10.1063/1.555808 (0)
[11]
BUXTON G V, GREENSTOCK C L, HELMAN W P, et al. Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O) in aqueous solution[J]. Journal of Physical and Chemical Reference Data, 1988, 17(2): 513-886. DOI:10.1063/1.555805 (0)
[12]
GUO Yaoguang, ZHOU Jun, LOU Xiaoyi, et al. Enhanced degradation of tetrabromobisphenol A in water by a UV/base/persulfate system:kinetics and intermediates[J]. Chemical Engineering Journal, 2014, 254(20): 538-544. (0)
[13]
JI Yuefei, DONG Changxun, KONG Deyang, et al. Heat-activated persulfate oxidation of atrazine:implications for remediation of groundwater contaminated by herbicides[J]. Chemical Engineering Journal, 2015, 263: 45-54. DOI:10.1016/j.cej.2014.10.097 (0)
[14]
ANIPSITAKIS G P, DIONYSIOU D D. Radical generation by the interaction of transition metals with common oxidants[J]. Environmental Science & Technology, 2004, 38(13): 3705-3712. (0)
[15]
张古承, 张静, 万子谦, 等. 铁锰双金属氧化物对过硫酸氢钾降解酸性橙7的催化效果[J]. 环境科学研究, 2015, 28(12): 1902-1907.
ZHANG Gucheng, ZHANG Jing, WAN Ziqian, et al. Degradation of acid orange 7 by peroxomonosulfate activated with Fe-MnOx[J]. Research of Environmental Sciences, 2015, 28(12): 1902-1907. (0)
[16]
刘佳露, 卢伟, 张凤君, 等. 活化过硫酸盐氧化地下水中苯酚的动力学研究[J]. 中国环境科学, 2015, 35(9): 2677-2681.
LIU Jialu, LU Wei, ZHANG Fengjun, et al. Kinetics study of activated persulfate oxidation of phenol in ground water[J]. China Environmental Science, 2015, 35(9): 2677-2681. (0)
[17]
HUANG Ying, WANG Zhaohui, FANG Changling, et al. Importance of reagent addition order in contaminant degradation in an Fe(Ⅱ)/PMS system[J]. RSC Advances, 2016(6): 70271-70276. (0)
[18]
RASTOGI A, ALABED S R, DIONGSIOU D D. Effect of inorganic, synthetic and naturally occurring chelating agents on Fe(Ⅱ) mediated advanced oxidation of chlorophenols[J]. Water Research, 2009, 43(3): 684-694. DOI:10.1016/j.watres.2008.10.045 (0)
[19]
于辉, 金春姬, 王鹏远, 等. Fe2+与Fe0活化过二硫酸盐降解活性艳蓝KN-R[J]. 环境科学研究, 2015, 28(1): 88-95.
YU Hui, JIN Chunji, WANG Pengyuan, et al. Degradation of reactive brilliant blue KN-R by persulfate activated with Fe2+ and Fe0[J]. Research of Environmental Sciences, 2015, 28(1): 88-95. (0)
[20]
HUANG Wenyu, BRIGANTE M, WU Feng, et al. Assessment of the Fe(Ⅲ)-EDDS complex in Fenton-like processes:from the radical formation to the degradation of bisphenol A[J]. Environmental Science & Technology, 2013, 47(4): 1952-1959. (0)
[21]
CHANG C J, HSIEH T H, TSAI K H, et al. Environmental photochemistry of iron complexes and their involvement in environmental chemical processes[J]. Progress in Chemistry, 2012, 24(2/3): 423-432. (0)
[22]
LI Yue, MACHALA L, YAN Weile. Fe-impregnated mineral colloids for peroxide activation:effects of mineral substrate and Fe precursor[J]. Environmental Science & Technology, 2015, 50(3): 1190-1199. (0)
[23]
IURASCU B, SIMINICEANU I, VIONE D, et al. Phenol degradation in water through a heterogeneous photo-Fenton process catalyzed by Fe-treated lapomite[J]. Water Research, 2009, 43(5): 1313-1322. DOI:10.1016/j.watres.2008.12.032 (0)
[24]
ZHOU Wenhui, LU Chunhua, GUO Xiuchun, et al. Mussel-inspired molecularly imprinted polymer coating superparamagnetic nanoparticles for protein recognition[J]. Journal of Materials Chemistry, 2010, 20(5): 880-883. DOI:10.1039/B916619J (0)
[25]
张俊豪, 孔庆红, 陆卫良, 等. 单分散四氧化三铁亚微球的合成、表征及磁性研究[J]. 科学通报, 2009, 54(11): 1529-1533.
ZHANG Junhao, KONG Qinghong, LU Weiliang, et al. Synthesis, characterization and magnetic properties of near monodisperse Fe3O4 sub-microspheres[J]. Chinese Science Bulletin, 2009, 54(11): 1529-1533. (0)
[26]
ZENG Huabin, LIU Shanshan, CHAI Buyu, et al. Enhanced photoelectrocatalytic decomplexation of Cu-EDTA and Cu recovery by persulfate activated by UV and cathodic reduction[J]. Environmental Science & Technology, 2016, 50(12): 6459-6466. (0)
[27]
FANG Guodong, GAO Juan, Dionysiou D D, et al. Activation of persulfate by quinones:free radical reactions and implication for the degradation of PCBs[J]. .Environmental Science & Technology, 2013, 47(9): 4605-4611. (0)
[28]
LUTZE H V, BIRCHER S, RAPP I, et al. Degradation of chlorotriazine pesticides by sulfate radicals and the influence of organic matter[J]. Environmental Science & Technology, 2015, 49(3): 1673-1680. (0)
[29]
MINELLA M, MARCHTTI G, LAURENTⅡS E D, et al. Photo-Fenton oxidation of phenol with magnetite as iron source[J]. Applied Catalysis B Environmental, 2014, 154-155(5): 102-109. (0)
[30]
CARLOS L, MARTIRE D O, GONZALEZ M C, et al. Photochemical fate of a mixture of emerging pollutants in the presence of humic substances[J]. Water Research, 2012, 46(15): 4732-4740. DOI:10.1016/j.watres.2012.06.022 (0)
[31]
AN Jibin., LI Guiying, AN Taicheng, et al. Indirect photochemical transformations of acyclovir and penciclovir in aquatic environments increase ecological risk[J]. Environmental Toxicology & Chemistry, 2015, 35(3): 584-592. (0)
[32]
US EPA. 712-C-98-099 Fate, transport and transformation test guidelines-OPPTS 835. 5270, indirect photolysis screening test[R]. Washington DC: US Environmental Protection Agency, 1998. (0)
[33]
QIAN Yajie, GUO Xin, ZHANG Yalei, et al. Perfluorooctanoic acid degradation using UV/persulfate process:modeling of the degradation and chlorate formation[J]. Environmental Science & Technology, 2016, 50(2): 772-781. (0)