环境科学研究  2018, Vol. 31 Issue (2): 337-344  DOI: 10.13198/j.issn.1001-6929.2017.03.78

引用本文  

马晓利, 武海英, 陈平. 三乙烯四胺改性风化煤对废水中Ni2+的吸附机制[J]. 环境科学研究, 2018, 31(2): 337-344.
MA Xiaoli, WU Haiying, CHEN Ping. Adsorption of Ni2+ in Wastewater by Triethylenete-Tramine Modified Weathered Coal[J]. Research of Environmental Sciences, 2018, 31(2): 337-344.

基金项目

新疆维吾尔族自治区自然科学基金面上项目(No.2015211A034)
Supported by Natural Science Foundation of Xinjiang Uygur Autonomous Region,China(No.2015211A034)

责任作者

作者简介

马晓利(1975-), 女(回族), 新疆乌鲁木齐人, 讲师, 博士, 主要从事污染物监测与控制研究, mxlemail@126.com

文章历史

收稿日期:2017-06-24
修订日期:2017-10-31
三乙烯四胺改性风化煤对废水中Ni2+的吸附机制
马晓利1,2 , 武海英1 , 陈平1     
1. 新疆师范大学化学化工学院, 新疆 乌鲁木齐 830054;
2. 新疆德安环保科技股份有限责任公司, 新疆 乌鲁木齐 830026
摘要:为提高风化煤对Ni2+的吸附性能,以XWC(新疆风化煤)为基体,TETA(三乙烯四胺)为改性剂,采用交联反应联合超声波振荡制备ACA(胺化煤基吸附剂),利用SEM(扫描电镜)等手段对其进行表征,并考察了体系pH、吸附剂用量、反应时间及溶液初始ρ(Ni2+)对吸附过程的影响,通过吸附动力学和吸附等温模型对吸附机制进行描述.结果表明,TETA中的多乙烯多胺基成功接枝到煤粉表面使风化煤的表面颗粒增多,比表面积由6.875 m2/g减至3.440 m2/g,孔容由0.011 cm3/g减至0.005 cm3/g.在pH为8.0、ACA用量为0.4 g时吸附效果最好.ACA和XWC对Ni2+的吸附过程均符合准二级动力学方程及Langmuir吸附等温模型.拟合得ACA的饱和吸附量为188.68 mg/g,较改性前提高了5.1倍.研究显示,ACA处理ρ(Ni2+)范围为200~1 000 mg/L的废水时,对Ni2+的去除率稳定在95%以上.
关键词三乙烯四胺    风化煤    吸附剂    Ni2+    
Adsorption of Ni2+ in Wastewater by Triethylenete-Tramine Modified Weathered Coal
MA Xiaoli1,2 , WU Haiying1 , CHEN Ping1     
1. College of Chemistry & Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China;
2. Xinjiang De'an Environmental Polytron Technologies Inc., Urumqi 830026, China
Abstract: Aminated coal-based adsorbent (ACA) was synthesized by using crossing reaction combined with ultrasonic vibration with Xinjiang weathered coal (XWC) as the carrier and triethylenete-tramine (TETA) as the modifier. The ACA was characterized by scanning electron microscope (SEM). The effect of solution pH, adsorbent dosage, reaction time, and initial ρ(Ni2+) on adsorption capacity were also investigated. Moreover, adsorption kinetics and adsorption isotherm models were used to describe adsorption mechanism. The results showed that the number of particles on weathered coal increased after the poly vinyl polyamine in TETA being successfully grafted onto the coal surface. Specifically, the specific surface area decreased from 6.875 m2/g to 3.440 m2/g and the pore volume decreased from 0.011 cm3/g to 0.005 cm3/g. The pH of 8.0 and ACA mass of 0.4 g leaded to an optimum adsorption effect. The adsorption kinetics of ACA and XWC on Ni2+ were fitted well by the pseudo-second-order kinetic model and Langmuir isotherm model. The adsorption capacity of ACA was 188.68 mg/g, which was improved by 5.1 times after modification. The removal rate of Ni2+ was reached to >95%, when the ρ(Ni2+) range from 200 mg/L to 1000 mg/L with ACA treatment.
Keywords: triethylenete-tramine    weathered coal    adsorbent    Ni2+    

废水中的Ni是一种不可降解的有毒重金属[1],主要来源于采矿、电镀、冶炼等行业,其化合物易被生物体吸收,具有强烈的致癌作用[2].目前处理含Ni废水的方法有化学沉淀法、离子交换法、膜分离法和吸附法等[3-6],化学沉淀法产生的大量污泥无法对Ni进行有效的回收,离子交换法和膜分离法工艺复杂且成本较高,不适合实际生产废水的处理.吸附法具有操作简洁、去除效率高且不引进二次污染的优点,被认为是一种最具前景的污水处理技术[7].但吸附法常用于处理浓度小于100 mg/L的重金属废水[8],对于浓度区间在200~1 000 mg/L的废水处理目前鲜见报道,因此,通过吸附法快速、高效地处理高浓度废水仍然是一个亟待解决的问题.

风化煤含氧量高但热值低,并且钙化较严重,不具备燃烧价值,吸附能力一般[9-10],可制备腐植酸[11-12]用于改良碱性土壤或作为改性剂以提高沥青的贮存稳定性[13-14].其来源广泛且价格低廉,通过改性可使其吸附性能提高,从而用于处理高浓度重金属废水.作为一种低成本吸附剂,其具有较大的开发价值.

该研究以XWC(新疆风化煤)为基体,以TETA(三乙烯四胺)为改性剂,采用交联反应联合超声波振荡制备ACA(胺化煤基吸附剂).利用SEM(扫描电镜)、比表面积及孔径分布测试、FTIR(红外光谱)及XPS(X射线光电子能谱)对其进行了表征,同时考察了体系pH、吸附剂用量、反应时间及溶液初始ρ(Ni2+)对吸附过程的影响,并通过对吸附动力学模型和吸附等温式模型的拟合对吸附机制进行了探讨,以期为改性风化煤处理高浓度重金属废水提供参考.

1 材料与方法 1.1 试剂与主要仪器

氢氧化钠(AR级),硫酸(AR级),硝酸镍(AR级),三乙烯四胺(AR级),试验用水为去离子水(电阻率>18.2 MΩ·cm).

JY92-2D型超声波细胞粉碎机(宁波新芝生物科技股份有限公司),Z-2000型原子吸收光谱仪(日本HITACHI公司),SU-8000型高分辨场发射扫描电镜(日本HITACHI公司),ASIQM0002-6型比表面积及孔径分布测试仪(美国康塔仪器公司),TENSOR27型红外光谱仪(布鲁克光谱仪器公司),ESCALAB 250Xi型X射线光电子能谱仪(美国Thermo Fisher Scientific公司).

1.2 吸附剂的制备

称取5 g XWC置于100 mL烧杯中,用称量纸将烧杯封口并置于80 ℃烘箱中恒温活化24 h.冷却至室温后依次加入40 mL去离子水、2.5 mL三乙烯四胺并搅拌混合.将烧杯置于超声波细胞粉碎机中,调整超声功率为250 W振荡60 min.反应后产物离心分离并弃去上清液,固相用去离子水反复洗涤至上清液呈中性,烘干后研磨至小于200目(0.075 mm)得到ACA(胺化煤基吸附剂),装入密封袋备用.

1.3 吸附材料表征

SEM测试:干燥后的样品经过喷金后,用SEM观察其颗粒形状和形貌,加速电压15 kV.

BET测试:样品测试前200 ℃真空持续12 h,在-196 ℃(液氮)条件下进行N2吸附-脱附试验,通过BET(Brunauer-Emmet-Teller)模型计算样品的比表面积;DFT(density functional theory)理论来计算孔径分布.

FTIR测试:取试样和KBr混合均匀,压片,置于傅里叶变换红外光谱仪进行测试,波数扫描范围为4 000~400 cm-1.

XPS测试:采用AlKα辐射线为X射线源,以285.0 eV处C1s结合能为校正,对样品进行光电子能谱测试.

1.4 吸附试验

采用批处理法进行吸附试验,分别研究吸附剂用量、体系pH、反应时间及溶液初始ρ(Ni2+)对吸附过程的影响.具体过程:100 mL烧杯中加入50 mL一定浓度的模拟废水,称取一定质量的煤粉,用1 mol/L NaOH和1 mol/L H2SO4溶液调节体系pH,将其放置在磁力搅拌器上搅拌一段时间后,将溶液移入离心管中离心10 min,取一定体积的上清液,用火焰原子吸收光谱法测定其中ρ(Ni2+),计算去除率和吸附量.

$ R = \left( {{C_0} - {C_{\rm{e}}}} \right)/{C_0} \times 100\% $ (1)
$ {Q_{\rm{e}}} = \left[ {\left( {{C_0} - {C_{\rm{e}}}} \right) \times V} \right]/m $ (2)

式中:R为Ni2+的去除率,%;C0Ce分别为溶液中初始及吸附平衡时ρ(Ni2+),mg/L;Qe为平衡吸附量,mg/g;V为溶液体积,mL;m为吸附剂用量,g.

2 结果与讨论 2.1 表面特性分析 2.1.1 SEM分析

改性前后风化煤的SEM图像见图 1.由图 1可见,XWC层状结构明显,颗粒较大且表面光滑. ACA部分层状结构坍塌,边缘发生钝化现象,颗粒整体变小且分布均匀,面积粗糙且富含颗粒,孔隙结构较改性前减小[15].

图 1 XWC和ACA的SEM图像 Fig.1 SEM spectrogram for XWC and ACA
2.1.2 BET分析

表 1图 2可见,与XWC相比,ACA比表面积由6.875 m2/g减至3.440 m2/g,孔容由0.011 cm3/g减至0.005 cm3/g,孔径由2.647 nm增至2.769 nm.说明超声波振荡去除了孔道中的杂质,使孔径增大,有利于Ni2+的扩散,吸附性能得以提高,同时TETA中的多乙烯多胺基附着在煤粉表面[16],导致比表面积及孔容减小.

表 1 比表面积分析参数 Table 1 Parameters of specific surface area

图 2 XWC和ACA的N2等温吸脱附曲线及孔径分布 Fig.2 Nitrogen adsorption/desorption isotherms and pore size distribution of XWC and ACA
2.1.3 FTIR分析

图 3可见,XWC在3 422、1 718、1 597、1 367、1 251、786 cm-1处出现吸收峰,其中3 422 cm-1处的宽峰主要来自—OH的伸缩振动,少部分来自—NH的伸缩振动[17],1 718 cm-1处尖峰为—C=O的伸缩振动,1 597 cm-1处尖峰为—NH的弯曲振动,1 367 cm-1处为—CH的对称伸缩振动峰,1 251 cm-1处为—OH的伸缩振动,786 cm-1处为—CH的弯曲振动峰.与XWC相比,ACA中1 718 cm-1和1 251 cm-1处消失,说明多乙烯多胺基成功接枝到风化煤表面,TETA与风化煤以—CN键形式相连,同时与—C=O发生加成[18].

图 3 XWC和ACA的IR谱图 Fig.3 IR spectrogram for XWC and ACA
2.1.4 XPS分析

图 4为XWC和ACA的XPS谱图和C1s谱图.由图 4(a)可见,XWC和ACA均在532.36、397.46、279.83、153.42、101.88 eV处出现O1s、N1s、C1s、S2p1、Si2p特征峰,ACA的N1s峰强明显高于XWC. XWC中C:N:O(原子百分比)为68.87:1.57:29.56,ACA中为70.56:8.52:20.92[18].经过TETA改性的ACA含碳量和含氮量明显增加,说明TETA中的多乙烯多胺基成功接枝到煤粉表面,该结果与IR谱图一致.由图 4(b)可见,XWC在283.58 eV处检出C=C/C—C吸收峰,在287.55 eV处检出C=O吸收峰,改性后的C=O吸收峰消失,在286.87 eV处检出C—N吸收峰.说明改性时TETA中的氨基与C=O发生加成反应后,以—CN单键形式存在于煤粉表面.

图 4 XWC和ACA的谱XPS图 Fig.4 XPS spectrogram for XWC and ACA
2.2 吸附的影响因素 2.2.1 吸附剂用量

不同用量的XWC和ACA对含Ni2+废水去除效果如图 5所示.由图 5可见,在一定范围内,ACA和XWC对Ni2+的去除率均随着吸附剂用量的增加呈上升趋势,随后趋于平衡.在XWC和ACA的用量分别为1.4和0.4 g时去除率最高,因此在吸附试验中最佳用量分别选定为1.4和0.4 g.当废水中ρ(Ni2+)一定时,随着吸附剂用量的增大,溶液中可供Ni2+吸附的活性吸附位点越多,Ni2+与吸附剂上的活性位点结合的机率增大,去除率就随之升高.当吸附剂用量增大到一定程度时,吸附剂颗粒之间的距离变小,外围形成屏蔽效应阻止Ni2+与吸附位点的结合[19],去除率趋于平衡.

注:吸附温度为298 K;初始ρ(Ni2+)为600 mg/L;pH=7.0;反应时间为60 min. 图 5 吸附剂用量对Ni2+去除效果的影响 Fig.5 Effects of sorbent dosage on Ni2+ removal
2.2.2 体系pH

图 6为体系pH对XWC和ACA吸附Ni2+效果的影响情况.由图 6可见,体系pH对Ni2+的去除效果影响显著,XWC和ACA分别在pH≥8和pH≥5的范围有较高去除率,并且均在pH为8.0时去除率最高,故XWC和ACA吸附试验的最佳pH均选定为8.0. pH对两种吸附剂吸附Ni2+的影响,主要与吸附剂的表面电荷特性和重金属离子的化学形态有关[16].当pH小于零电荷电位时,溶液中存在的大量游离H+将风化煤表面的—NH质子化成—NH2+,和Ni2+产生静电排斥,导致去除率较低[20].当pH高于零电荷电位时,质子化现象消失,Ni2+在电荷引力的驱动下涌向吸附剂表面[21],并且溶液中存在的大量OH-与Ni2+生成Ni(OH)2沉淀,去除率随之升高,最终趋于平衡.

注:吸附温度为298 K;初始ρ(Ni2+)为600 mg/L;反应时间为60 min;m(XWC)为1.4 g;m(ACA)为0.4 g. 图 6 pH对Ni2+去除效果的影响 Fig.6 Effects of pH on Ni2+ removal
2.2.3 反应时间

不同反应时间XWC和ACA对Ni2+的去除效果如图 7所示.由图 7可见,该吸附过程分为初期快速和中后期缓慢两个阶段:前20 min XWC和ACA对Ni2+的去除率迅速升高;30 min后基本达到吸附平衡且趋向稳定,故XWC和ACA吸附试验的最佳反应时间均选定为30 min.在初期快速阶段,风化煤与废水交界面的ρ(Ni2+)较大,形成较大的吸附动力,Ni2+迅速占领煤粉外表面的吸附位点.当Ni2+进入煤粉内部孔径后,交界面ρ(Ni2+)减小,导致吸附动力减弱,去除率随之下降[22].

注:吸附温度为298 K;初始ρ(Ni2+)为600 mg/L;pH=8.0;m(XWC)为1.4 g;m(ACA)为0.4 g. 图 7 反应时间对Ni2+去除效果的影响 Fig.7 Effects of contact time on Ni2+ removal
2.2.4 吸附动力学

为了更好地解释两种吸附剂对Ni2+的吸附过程,分别采用准一级、准二级动力学方程拟合吸附过程,并对它们的动力学参数进行对比,确定吸附过程的速率控制步骤及吸附机制,拟合结果见图 8,参数见表 2.由图 8表 2可见,准二级动力学方程的相关系数更接近于1,并且平衡吸附量拟合结果更接近试验值,因此准二级动力学方程更适合描述XWC和ACA吸附Ni2+的动力学全过程.说明吸附过程包括外部液膜扩散、表面吸附和颗粒内扩散等,化学吸附是吸附过程的速率控制步骤[23].

图 8 XWC和ACA吸附Ni2+的动力学拟合曲线 Fig.8 Kinetics fitting curve of XWC and ACA to adsorption of Ni2+

表 2 XWC和ACA吸附Ni2+的动力学模型参数 Table 2 Kinetic model parameters of XWC and ACA adsorption of Ni2+
2.2.5 初始ρ(Ni2+)

XWC和ACA对不同初始ρ(Ni2+)废水去除效果如图 9所示.由图 9可见,ACA在初始ρ(Ni2+)为200~1 000 mg/L的范围内,对Ni2+的去除率稳定在95%以上,随着初始ρ(Ni2+)的提高,去除率逐渐下降; 而在初始ρ(Ni2+)>600 mg/L时,XWC对Ni2+的去除率迅速下降.由于单位吸附剂的吸附位点有限,ρ(Ni2+)的增加提高了吸附位点周围的离子浓度差,促进了传质作用,去除率保持恒定; 随着Ni2+数量的增加,吸附位点逐渐被占据达到饱和状态,导致去除率下降[24].

注:吸附温度为298 K;pH=8.0;反应时间为30 min;m(XWC)为1.4 g;m(ACA)为0.4 g. 图 9 初始ρ(Ni2+)对Ni2+去除效果的影响 Fig.9 Effects of initial concentration on Ni2+ removal
2.2.6 等温吸附线

为了更好地描述两种吸附剂对Ni2+的吸附达到平衡时,Ni2+在溶液中和吸附剂内的分布情况,采用Langmuir和Freundlich等温吸附模型进行线性拟合[25-26].由图 10表 3可见,Langmuir等温吸附模型的R2更接近1,能更好地描述XWC和ACA对Ni2+的吸附过程.说明XWC和ACA对Ni2+的吸附主要为单分子层吸附,并且处于不同吸附位点的Ni2+之间侧向作用力为零.由拟合计算得出XWC的饱和吸附量为37.04 mg/g,ACA的饱和吸附量为188.68 mg/g,改性后的风化煤较改性前饱和吸附量提高了5.1倍,明显优于其他生物质基或无机吸附剂对Ni2+的吸附效果(见表 4).

图 10 XWC和ACA吸附Ni2+的拟合曲线 Fig.10 Fitting curves of XWC and ACA adsorption of Ni2+

表 3 XWC和ACA吸附Ni2+的等温吸附模型参数 Table 3 Adsorption isotherm model parameters of XWC and ACA adsorption of Ni2+

表 4 不同吸附剂对Ni2+的吸附比较 Table 4 Comparison of Ni2+ adsorption with other reported adsorbents
3 结论

a) 表征结果显示,TETA中的多乙烯多胺基以—CN键形式连接到风化煤表面使煤粉表面颗粒增加,比表面积由6.875 m2/g减至3.440 m2/g,孔容由0.011 cm3/g减至0.005 cm3/g.

b) 通过考察体系pH、吸附剂用量、初始ρ(Ni2+)等条件,确定ACA在pH为8.0,用量为0.4 g的条件下,30 min内对ρ≤1 000 mg/L的含Ni2+废水保持95%以上的去除率.

c) ACA和XWC对Ni2+的吸附过程均符合准二级动力学模型及Langmuir吸附等温式.拟合得ACA的饱和吸附量为188.68 mg/g,较改性前提高了5.1倍,而且明显优于其他生物质基或无机吸附剂.

致谢:

该研究中扫描电镜、比表面积及孔径、XPS测试工作由新疆大学理化测试中心完成,在此表示感谢.

参考文献
[1]
PRITHVIR D, DEBOLEENA K, NEELU N, et al. Biosorption of nickel by Lysinibacillus sp.BA2 native to bauxite mine[J]. Ecotoxicology & Environmental Safety, 2014, 107: 260-268. (0)
[2]
BROUWERE D K, BUEKERS J, COMELIS C, et al. Assessment of indirect human exposure to environmental sources of nickel:oral exposure and risk characterization for systemic effects[J]. Science of the Total Environment, 2012, 419(3): 25-36. (0)
[3]
MACKENZIE M, VIRNIG M, FEATHER A. The recovery of nickel from high-pressure acid leach solutions using mixed hydroxide product:LIX®84-INS technology[J]. Minerals Engineering, 2006, 19(12): 1220-1233. (0)
[4]
MENDES F D, MARTINS A H. Selective nickel and cobalt uptake from pressure sulfuric acid leach solutions using column resin sorption[J]. International Journal of Mineral Processing, 2005, 77(1): 53-63. DOI:10.1016/j.minpro.2005.02.001 (0)
[5]
IJAGBEMI C O, BAEK M H, KIM D S. Adsorptive performance of un-calcined sodium exchanged and acid modified montmorillonite for Ni2+ removal:equilibrium, kinetics, thermodynamics and regeneration studies[J]. Journal of Hazardous Materials, 2010, 174(1/2/3): 746-755. (0)
[6]
沈王庆, 雷阳, 邵培利. H3BO3改性柠檬渣对Cu2+ Pb2+ Cr6+的吸附性能[J]. 环境科学研究, 2017, 30(1): 152-158.
SHEN Wangqing, LEI Yang, SHAO Peili. Adsorption properties of lemon residues chemically modifed by H3BO3 to Cu2+, Pb2+ and Cr6+[J]. Research of Environmental Sciences, 2017, 30(1): 152-158. (0)
[7]
张帆, 李菁, 谭建华, 等. 吸附法处理重金属废水的研究进展[J]. 化工进展, 2013, 32(11): 2749-2756.
ZHANG Fan, LI Jing, TAN Jianhua, et al. Advance of the treatment of heavy metal wastewater by adsorption[J]. Chemical Industry and Engineering Progress, 2013, 32(11): 2749-2756. (0)
[8]
申延明, 张僖, 赵晓蕾, 等. 柠檬酸插层MgAl水滑石对水溶液中Zn2+的吸附性能[J]. 中国有色金属学报, 2015, 25(8): 2300-2308.
SHEN Yanming, ZHANG Xi, ZHAO Xiaolei, et al. Adsorption performance of citrate intercalated MgAl layered double hydroxides on Zn2+ in aqueous solution[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(8): 2300-2308. (0)
[9]
WU Jianfeng, XU Qichu, BAI Tao. Adsorption behavior of some radionuclides on the Chinese weathered coal[J]. Applied Radiation & Isotopes, 2007, 65(8): 901-909. (0)
[10]
SIMATE G S, MALEDI N, OCHIENG A, et al. Coal-based adsorbents for water and wastewater treatment[J]. Journal of Environmental Chemical Engineering, 2016, 4(2): 2291-2312. DOI:10.1016/j.jece.2016.03.051 (0)
[11]
张小宇, 甄卫军, 孙明广. 奇台风化煤水热法制备黄腐酸的绿色工艺研究[J]. 现代化工, 2017(2): 116-119.
ZHANG Xiaoyu, ZHEN Weijun, SUN Mingguang. Green preparation process of fulvic acid from Qitai weathered coal based on hydrothermal method[J]. Modern Chemical Industry, 2017(2): 116-119. (0)
[12]
ZHANG Shuiqin, YUAN Liang, LI Wei, et al. Characterization of pH-fractionated humic acids derived from Chinese weathered coal[J]. Chemosphere, 2017, 166: 334-342. DOI:10.1016/j.chemosphere.2016.09.095 (0)
[13]
ZHANG Ji, WU Yiqian, WANG Junlong, et al. Improved properties of weathered coal and SBR/weathered coal compound modified asphalt[J]. Iranian Polymer Journal, 2007, 16(4): 251-259. (0)
[14]
ZHANG Ji, WANG Junlong, WU Yiqian, et al. Evaluation of the improved properties of SBR/weathered coal modified bitumen containing carbon black[J]. Construction & Building Materials, 2009, 23(7): 2678-2687. (0)
[15]
王彤彤, 马江波, 曲东, 等. 两种木材生物炭对铜离子的吸附特性及其机制[J]. 环境科学, 2017, 38(5): 2161-2171.
WANG Tongtong, MA Jiangbo, QU Dong, et al. Adsorption of copper from aqueous solutions on biochar produced from sawdust and apple branch[J]. Environmental Science, 2017, 38(5): 2161-2171. (0)
[16]
蒋顺成, 秦睿, 李满林, 等. EDTA-nSiO2纳米颗粒对Cd2+的吸附[J]. 环境科学, 2016, 37(9): 3480-3487.
JIANG Shuncheng, QIN Rui, LI Manlin, et al. Adsorption Cd2+ from solution by EDTA-modified silicate nanoparticles[J]. Environmental Science, 2016, 37(9): 3480-3487. (0)
[17]
LI Manlin, ZHANG Zengqiang, LI Ronghua, et al. Removal of Pb(Ⅱ) and Cd(Ⅱ) ions from aqueous solution by thiosemicarbazide modified chitosan[J]. International Journal of Biological Macromolecules, 2016, 86: 876-884. DOI:10.1016/j.ijbiomac.2016.02.027 (0)
[18]
魏金枝, 陈芳妮, 孙晓君, 等. 氨基修饰磁性氧化石墨烯吸附离子型染料性能[J]. 中国环境科学, 2016, 36(7): 2020-2026.
WEI Jinzhi, CHEN Fangni, SUN Xiaojun, et al. Adsorption performance of amino functionalized magnetic graphene oxide composite to ionic dyes[J]. China Environmental Science, 2016, 36(7): 2020-2026. (0)
[19]
VILAR V J P, BOTELHO C M S, BOAVENTURA R A R. Equilibrium and kinetic modelling of Cd(Ⅱ) biosorption by algae Gelidium and agar extraction algal waste[J]. Water Research, 2006, 40(2): 291-302. (0)
[20]
VILLANUEVA M E, SALINAS A, COPELLO G J, et al. Point of zero charge as a factor to control biofilm formation of Pseudomonas aeruginosa in sol-gel derivatized aluminum alloy plates[J]. Surface & Coatings Technology, 2014, 254(10): 145-150. (0)
[21]
LI Ronghua, ZHANG Meng, YANG Yati, et al. Adsorption of Pb(Ⅱ) ions in aqueous solutions by common reed ash-derived SBA-15 modified by amino-silanes[J]. Desalination & Water Treatment, 2014, 55(6): 1-13. (0)
[22]
王博, 叶春, 李法云, 等. 水生植物制生物炭对硝态氮的吸附规律研究[J]. 中国环境科学, 2017, 37(1): 116-122.
WANG Bo, YE Chun, LI Fayun, et al. Studies on adsorption of nitrate from modified hydrophyte biochars[J]. China Environmental Science, 2017, 37(1): 116-122. (0)
[23]
NETHAJI S, SIVASAMY A, MANDAL A B. Preparation and characterization of corn cob activated carbon coated with nano-sized magnetite particles for the removal of Cr(Ⅵ)[J]. Bioresource Technology, 2013, 134(2): 94-100. (0)
[24]
GUAYA D, VALDERRAMA C, FARRAN A, et al. Simultaneous phosphate and ammonium removal from aqueous solution by a hydrated aluminum oxide modified natural zeolite[J]. Chemical Engineering Journal, 2015, 271: 204-213. DOI:10.1016/j.cej.2015.03.003 (0)
[25]
ZENG Guangming, LIU Yuanyuan, TANG Lin, et al. Enhancement of Cd(Ⅱ) adsorption by polyacrylic acid modified magnetic mesoporous carbon[J]. Chemical Engineering Journal, 2015, 259: 153-160. DOI:10.1016/j.cej.2014.07.115 (0)
[26]
TAN Ping, SUN Jian, HU Yongyou, et al. Adsorption of Cu2+, Cd2+and Ni2+ from aqueous single metal solutions on graphene oxide membranes[J]. Journal of Hazardous Materials, 2015, 297: 251-260. DOI:10.1016/j.jhazmat.2015.04.068 (0)
[27]
杨金杯, 陈玉成, 余美琼, 等. 001×14.5离子交换树脂对镍(Ⅱ)的吸附[J]. 环境工程学报, 2013, 7(8): 3019-3024.
YANG Jinbei, CHEN Yucheng, YU Meiqiong, et al. Adsorption of Ni(Ⅱ) by ion exchange resin(001×14.5)[J]. Chinese Journal of Environmental Engineering, 2013, 7(8): 3019-3024. (0)
[28]
李盛柏. 柠檬酸改性竹纤维吸附重金属Ni2+的研究[D]. 重庆: 重庆大学, 2016: 56-57. (0)
[29]
郭学益, 梁莎, 肖彩梅, 等. MgCl2改性橘子皮对水溶液中镉镍的吸附性能[J]. 中南大学学报(自然科学版), 2011, 42(7): 1841-1846.
GUO Xueyi, LIANG Sha, XIAO Caimei, et al. Adsorption of Cd2+ and Ni2+ from aqueous solutions by MgCl2 modified orange peel[J]. Journal of Central South University(Science and Technology), 2011, 42(7): 1841-1846. (0)
[30]
项念念. 四乙烯五胺改性膨润土的制备及对铜、镍、镉的吸附研究[D]. 成都: 成都理工大学, 2014: 49-50. (0)
[31]
王文忠, 黄少斌. 亚胺基二乙酸树脂对金属镍的静态吸附及连续逆流U形解吸系统[J]. 化工进展, 2009, 28(11): 2040-2046.
WANG Wenzhong, HUANG Shaobin. Static adsorption properties of Ni(Ⅱ) by IDA resin and U-shaped continuous countercurrent desorption[J]. Chemical Industry and Engineering Progress, 2009, 28(11): 2040-2046. (0)
[32]
MAHMOOD T, KHAN A, NAEEM A, et al. Adsorption of Ni(Ⅱ) ions from aqueous solution onto a fungus Pleurotus ostreatus[J]. Desalination & Water Treatment, 2015, 57(16): 7209-7218. (0)
[33]
GUO Xueyan, ZHANG Shuzhen, SHAN Xiaoquan. Adsorption of metal ions on lignin[J]. Journal of Hazardous Materials, 2008, 151(1): 134-142. DOI:10.1016/j.jhazmat.2007.05.065 (0)
[34]
GUPTA B S, CURRAN M, HASAN S, et al. Adsorption characteristics of Cu and Ni on irish peat moss[J]. Journal of Environmental Management, 2009, 90(2): 954-960. DOI:10.1016/j.jenvman.2008.02.012 (0)
[35]
JAIN M, GARG V K, KADIRVELU K. Removal of Ni(Ⅱ) from aqueous system by chemically modified sunflower biomass[J]. Desalination & Water Treatment, 2014, 52(28/29/30): 5681-5695. (0)