环境科学研究  2020, Vol. 33 Issue (1): 210-217  DOI: 10.13198/j.issn.1001-6929.2019.03.16

引用本文  

蔡佳佩, 朱坚, 彭华, 等. 有机肥施用对田面水氮磷流失风险的影响[J]. 环境科学研究, 2020, 33(1): 210-217.
CAI Jiapei, ZHU Jian, PENG Hua, et al. Effects of Organic Fertilizer on the Risk of Nitrogen and Phosphorus Loss in Soil Surface Water[J]. Research of Environmental Sciences, 2020, 33(1): 210-217.

基金项目

国家重点研发计划项目(No.2018YFD0800501);湖南省重点研发计划项目(No.2016JC2028);湖南省农业科学院科技创新项目(No.2017QN32)
National Key Research and Development Program of China (No.2018YFD0800501); Key Research and Development Program of Hunan Province, China (No.2016JC2028); Agricultural Science and Technology Innovation Fund of Hunan Province, China (No.2017QN32)

责任作者

纪雄辉(1965-), 男, 湖南平江人, 研究员, 博士, 博导, 主要从事植物营养与农业环境研究, 1546861600@qq.com.

作者简介

蔡佳佩(1995-), 女, 湖南岳阳人, 594792185@qq.com

文章历史

收稿日期:2018-11-11
修订日期:2019-03-06
有机肥施用对田面水氮磷流失风险的影响
蔡佳佩1, 朱坚2, 彭华2, 李尝君2, 熊丽萍1, 张子叶1, 纪雄辉1,2    
1. 湖南大学研究生院隆平分院, 湖南 长沙 410125;
2. 湖南省农业环境生态研究所, 农业部长江中游平原农业环境重点实验室, 农田土壤重金属污染防控与修复湖南省重点实验室, 湖南 长沙 410125
摘要:为探明化肥配施有机肥对田面水氮、磷流失及水稻系统养分吸收的影响,采用田间小区试验,设置常规施肥处理(FN)、常规施肥减氮磷量20%处理(F0)、减氮磷20%+有机肥处理(F1~F4处理有机肥施用量分别为1 500、3 000、4 500和6 000 kg/hm2)共6个处理,探索化肥减量20%配施有机肥的最优组合.结果表明:不同施肥处理下,田面水中ρ(TN)、ρ(NH4+-N)均于施肥后第1天达到峰值,随后迅速下降,于第7天后逐渐趋于稳定,ρ(TN)和ρ(NH4+-N)分别维持在各自峰值的5.1%~10.9%与4.8%~9.6%,田面水中ρ(TP)的变化趋势与ρ(TN)相似;F0与F1处理均能有效降低田面水中ρ(TN)和ρ(TP).与FN处理相比,F1处理下ρ(TN)、ρ(NH4+-N)与ρ(TP)平均值分别降低了6.5%、9.1%和3.1%,该处理能够有效地降低氮、磷养分流失风险,且增施有机肥可使水稻增产0.2%~19.8%,地上部分氮、磷累积量随有机肥施用量的增加而显著增加(P < 0.05).综合水稻产量、养分吸收和田面水养分动态等指标发现,F1处理不仅能提高区域双季稻产量,还能有效控制田面水氮、磷养分浓度,降低氮、磷地表径流产生的农田面源污染风险,是针对南方双季稻田的一项"控源节流"优化施肥模式.
关键词氮磷    有机肥    田面水    水稻    
Effects of Organic Fertilizer on the Risk of Nitrogen and Phosphorus Loss in Soil Surface Water
CAI Jiapei1, ZHU Jian2, PENG Hua2, LI Changjun2, XIONG Liping1, ZHANG Ziye1, JI Xionghui1,2    
1. Long Ping Branch, Graduate School of Hunan University, Changsha 410125, China;
2. Key Lab of Agri-Environment in the Middle Reach Plain of Yangtze River, Ministry of Agriculture, Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution in Hunan Province, Hunan Institute of Agri-Environment and Ecology, Changsha 410125, China
Abstract: To investigate the effects of combined application of inorganic fertilizer with different rates of organic fertilizer on nitrogen (N) and phosphorus (P) loss in soil surface water and nutrient absorption in rice system, a field case study with independent irrigation system was conducted. Six treatments, including conventional fertilization (FN), 20% reduction of inorganic fertilization (F0), and reduced 20% inorganic fertilization combined with different rates of organic fertilization (F1-F4 treatments with 1500, 3000, 4500 and 6000 kg/hm2 organic fertilizer, respectively) were set up to determine the optimal application rate of organic fertilizer in combination with 20% reduction of inorganic fertilizer. The results showed that the concentrations of total nitrogen (TN) and ammonium nitrogen (NH4+-N) in soil surface water peaked on the first day after fertilizer application and decreased thereafter, and stabilized at 5.1%-10.9% and 4.8%-9.6% respectively compared to the maximum after a week. The variation pattern of total phosphorus (TP) concentration was similar to that of N. The study indicated that F0 treatment and F1 treatment could effectively reduce the risk of both N and P losses. Compared to the FN treatment, the content of TN, NH4+-N and TP in soil surface water in the F1 treatment decreased by 6.5%, 9.1% and 3.1%, respectively. The application of organic fertilizer in combination with inorganic fertilizer promoted the rice yields by 0.2%-19.8%. The amounts of rice dry matter and nitrogen and phosphorus accumulated in rice increased significantly with the application rates of organic fertilizer (P < 0.05). Considering all benefits, including rice yield, rice nutrient absorption and nutrient dynamics in soil surface water, F1 treatment proved to be an effective fertilization method to control agricultural non-point source pollution in paddy fields in South China, which not only improved rice yield, but also effectively controlled the N and P concentrations in soil surface water.
Keywords: nitrogen and phosphorus    organic fertilizer    soil surface water    rice    

水稻是我国最主要的粮食作物,播种面积约占粮食种植总面积的30%.随着农药化肥的广泛甚至过度施用[1],粮食产量虽然得到大幅增长,但过量的药肥施用也造成了一系列的土壤问题[2-5],如面源污染[6]、土壤肥力持续下降、土壤盐渍化等,同时对大气环境和水质产生负面影响,影响农产品质量,危害人体健康.

有机肥的施用在一定程度上降低了田面水中氮磷流失速率[7].由于有机肥含有作物生长必需的氮、磷、钾以及其他大量和微量元素,且有机肥的肥效释放缓慢,以保证后期提供肥效[8];而有机肥也能增加土壤的阳离子代换量,进而增加土壤的保肥力以及土壤有机质含量.通过化肥与有机肥的部分替代可以协调化肥供肥过程,有效提高氮磷肥的利用率,从而减少氮磷流失[9].廖义善等[10]研究发现,在化肥与有机肥的最优配施后氮素损失量相较常规施肥减少30%.合理利用有机肥资源,通过有机肥与化肥配施提高土壤肥力,减少氮磷肥的流失量[11],无机-有机肥配施有利于协调土壤碳、氮库的平衡,从而提高土壤系统生产力[12].同单施化肥相比,施用有机-无机肥的配合处理,早晚稻田面水最高ρ(TN)分别降低了26%~52%[13].无机-有机肥合理配施有利于提高土壤有机质和氮磷钾养分,促进水稻对养分吸收、累积与利用,减少氮磷养分下渗[14].

施肥与水稻产量及养分吸收的研究颇受关注[15-19],而减量施肥配施有机肥对土壤田面水氮磷流失风险及水稻生长与氮磷养分吸收的研究甚少,该研究以构建互相隔离、独立封闭灌溉和排水系统的种植小区,通过水稻田间小区肥效试验,探索无机-有机肥的最佳组配方式,以期为水稻合理施肥技术推广应用、耕地保护和面源污染控制提供理论依据.

1 材料与方法 1.1 区域概况

试验区域位于湖南省长沙县开慧镇(113°13′22″E、28°34′44″N),属亚热带季风性湿润气候.年均降水量1 500 mm,多年平均气温为17 ℃,7月为最热月,平均气温为29.8 ℃,1月为最冷月,平均气温为17.2 ℃,无霜期270~310 d.供试土壤类型为麻砂泥,土壤中w(有机质)为41.4 g/kg,w(TN)为2.54 g/kg,w(TP)为0.88 g/kg,w(碱解氮)为152 mg/kg,w(有效磷)为24.5 mg/kg,w(速效钾)为86 mg/kg,pH为6.23.调查流域农田面积约25 km2.

1.2 试验设计

早、晚稻品种分别选用株两优189与泰优390.试验设置6个处理:常规施肥(FN)、减量施肥(F0)以及减量梯度配施有机肥(F1~F4),每个处理均设3个重复,共18个小区,各小区面积为21 m2,且随机排列,小区间用薄膜覆盖田埂隔开,田埂高出田面35 cm,保证各小区独立,防止串灌串排. 2017年4月23日施肥,不同处理的施肥方案见表 1,采用撒施方式施用尿素(N含量为46%)、钙镁磷肥(P2O5含量为16%)、氯化钾(K2O含量为60%)以及商品有机肥(N含量为2.4%、P2O5含量为1.2%、K2O含量为1.5%),其他田间管理与当地种植习惯保持一致.

表 1 不同处理试验施肥方案 Table 1 Fertilization scheme in trial field with different treatments
1.3 样品采集及测定方法

在每季施肥后的第1、3、5、7、9、15、25、45、65天采集田面水,采样均在08:00—10:00进行.田面水采集方法:用竹竿绑定采样塑料杯,于田埂四周,不扰动土层,多点混合采集约250 mL田面水装于塑料瓶中.采样结束后,迅速带回实验室分析测定ρ(NH4+-N)、ρ(TN)和ρ(TP)(所有样品在取样后48 h内分析完成).采用HJ 535—2009《水质氨氮的测定纳氏试剂分光光度法》测定水样中ρ(NH4+-N);采用HJ 636—2012《水质总氮的测定碱性过硫酸钾消解紫外分光光度法》测定水样中ρ(TN);采用GB 11893—1989《水质总磷的测定钼酸铵分光光度法》测定水样中ρ(TP).

2017年7月15日和11月1日全面收割不同小区成熟期水稻,分别统计各小区水稻地上部分生物量.采用NY/T 2017—2011《植物中氮、磷、钾的测定》所述H2SO4-H2O2法消煮水稻籽粒和秸秆,后通过凯氏定氮法测定w(TN),采用过硫酸钾消解-钼锑抗比色法测定w(TP).

1.4 数据处理方法

试验结果均以3次重复的平均值表示,数据处理采用Microsoft Excel 2007软件进行处理,使用DPS软件进行LSD检验差异显著性分析与Pearson线性相关分析,采用Origin 8.0软件作图.

2 结果与分析 2.1 不同施肥模式下水稻田面水中氮素动态变化

图 1可知,早、晚稻季田面水中ρ(TN)的变化趋势相近,ρ(TN)在施入基肥后的第1天达到顶峰,F4处理下ρ(TN)最高,早、晚稻季分别为265.57、229.70 mg/L,1~7 d内迅速下降,而后降低速率趋于平缓,早、晚稻季ρ(TN)降至峰值期的5.1%~10.9%.不同施肥处理下田面水ρ(TN)存在差异,F0处理的田面水ρ(TN)最小,减量配施有机肥的F0~F4处理下,早、晚稻季田面水ρ(TN)呈明显的梯度变化,即F4>F3>F2>F1>F0.这说明化肥减量20%情况下,加大有机肥施用量会导致肥料流失和环境污染风险增加.

图 1 施肥后早、晚稻季田面水ρ(TN)的动态变化 Fig.1 Dynamic variation of TN concentration in soil surface water after fertilization during the period of early and late rice

早稻季F1处理的氮肥施用量比常规施肥FN处理增量3.3%的情况下,FN处理田面水在施基肥后第1天的ρ(TN)比F1处理高出5.6%,以及晚稻季F1与FN处理氮肥施用量相同的情况下,F1处理下ρ(TN)比FN处理减少了6.9%;施入基肥后第1天,F0处理的ρ(TN)最高,比FN处理高出19.0%,且达到显著水平(P < 0.05).因此,与FN处理相比,F0处理可有效降低水体ρ(TN),但F1处理能够在不降低肥力水平的情况下,更好地降低TN流失的风险.

水稻田面水中ρ(NH4+-N)随时间的变化如图 2所示.由图 2可见,水稻田面水中ρ(NH4+-N)在施肥后第1天达到顶峰,第7天后降至峰值的4.8%~9.6%,随后趋于稳定水平. ρ(NH4+-N)从施肥后第1天开始,田面水ρ(NH4+-N)随有机肥配施量的增加而增加,F0~F4处理田面水平均ρ(NH4+-N)分别为29.45、33.58、36.22、39.76和43.22 mg/L,F4处理的平均ρ(NH4+-N)最高,表明如果施肥之后由降雨事件产生径流,F4处理的氮素流失风险最高.将FN处理与F1处理作比较会发现,在施基肥后的第1天,早、晚稻季F1处理的氮肥施用量高于FN处理以及F1与FN处理施用等量氮肥的情况下,FN田面水在施基肥后第1天的ρ(NH4+-N)比F1处理增加了9.0%与9.1%,说明与单施化肥相比,无机-有机肥配施可显著降低稻田水体ρ(NH4+-N)的峰值.

图 2 施肥后早、晚稻季田面水ρ(NH4+-N)的动态变化 Fig.2 Dynamic variation of NH4+-N concentration in soil surface water after fertilization during the period of early and late rice
2.2 不同施肥水稻田面水中磷素动态变化

图 3可见,田面水ρ(TP)均于施肥后第1天达到顶峰,在1~7 d以内出现一个缓慢下降的趋势,随后呈现一定波动.其中,ρ(TP)变化范围为0.067~2.144 mg/L,远高于水体富营养化发生的临界浓度(0.02 mg/L)[20].整个水稻季,田面水ρ(TP)在施肥后的第1天达到峰值,而后逐日递减.其中,F4处理的ρ(TP)峰值最高,早、晚稻季分别为1.20和2.14 mg/L;F0处理的ρ(TP)峰值最低,仅为0.33和1.07 mg/L;田面水ρ(TP)随有机肥配施量的增加而增加,F0~F4处理田面水平均ρ(TP)分别为0.24、0.29、0.36、0.40和0.46 mg/L.早稻季F1处理与FN处理磷肥施用量相同的情况下,FN处理田面水在施基肥后第1天的ρ(TP)比F1处理增加了3.1%,以及在晚稻季F1处理的磷肥施用量比FN处理增量10%的情况下,F1处理的ρ(TP)比FN处理增加了11.7%.因此,根据磷素流失趋势,施肥后1周内是减少磷素流失的最佳时期,且需要控制磷肥的使用量才能够降低磷素流失的风险.

图 3 早、晚稻季田面水ρ(TP)的动态变化 Fig.3 Dynamic variation of TP concentration in soil surface water after fertilization during the period of early and late rice
2.3 不同施肥对双季稻产量与地上部分营养物质累积量的影响

减量配施梯度有机肥F1~F4处理下早、晚稻的籽粒与秸秆产量均随有机肥的施加而增加(见表 2),早稻F4处理的籽粒与秸秆产量分别为5 922.00与5 915.00 kg/hm2,晚稻产量分别为7 258.68和7 586.64 kg/hm2,其地上部分产量比F0处理增产12.9%~25.9%,无显著性差异(P < 0.05).与FN相比,减量配施有机肥处理地上部分产量差异不显著(P < 0.05),但有稳产的效果.随着有机肥配施量的增加,籽粒和秸秆中w(TN)、w(TP)和累积量均呈增加趋势.早、晚稻F1~F4处理的秸秆氮累积量分别为33.89~48.37、60.09~84.38 kg/hm2,呈现出F4>F3>F2>F1>F0的趋势,呈显著性差异(P < 0.05);早稻F1~F4处理下籽粒氮累积量比F0处理分别增加1.0%、11.6%、23.9%、30.8%,晚稻分别增加7.1%、18.3%、22.8%、30.4%,且差异显著(P < 0.05).早、晚稻F0~F4处理下地上部分磷累积量均呈增加趋势,存在显著性差异(P < 0.05).

表 2 不同施肥处理下早、晚稻产量与营养物质积累情况 Table 2 Effect of different fertilizer supply on cropping yield and nutrient accumulation
2.4 有机肥施用下田面水氮磷浓度与植株氮磷累积量的关联性

对不同施肥处理下有机肥氮素施用量、田面水峰值ρ(TN)、峰值ρ(NH4+-N)、籽粒氮累积量与秸秆氮累积量各指标间的相关性进行分析(见表 3),发现不同施肥处理下有机肥氮素施用量与田面水ρ(TN)峰值、ρ(NH4+-N)峰值之间均呈极显著正相关,与籽粒氮累积量呈极显著相关;田面水ρ(TN)峰值与ρ(NH4+-N)峰值呈极显著相关性,并且籽粒氮累积量与秸秆氮累积量指标间也呈极显著相关.由表 4可见,有机肥磷素施用量与田面水ρ(TP)峰值、植株w(TP)均呈正相关,田面水ρ(TP)峰值与籽粒磷累积量、秸秆磷累积量两个指标均呈极显著正相关,籽粒磷累积量与秸秆磷累积量指标也呈极显著正相关.这些结果都表明提高有机肥施用量是导致田面水ρ(TN)与ρ(TP)升高以及水稻养分含量增加的主要原因.

表 3 不同施肥处理下有机肥氮素施用量、田面水氮素与植株地上部分氮累积量的相关性 Table 3 Correlation coefficients between nitrogen organic- fertilizer application, nitrogen concentration in soil surface water and nitrogen accumulation by rice under different fertilizer applications

表 4 不同施肥处理下有机肥磷素施用量、田面水磷素与植株地上部分磷累积量的相关性 Table 4 Correlation coefficients between phosphate organic-fertilizer application, phosphate concentration in soil surface water and phosphate accumulation by rice under different fertilizer applications
3 讨论 3.1 增施有机肥对田面水中氮磷动态的影响

该研究表明,田面水ρ(TN)、ρ(TP)的下降趋势呈指数形式,ρ(TN)在施肥后第1天达到峰值后逐渐下降,到第7天趋于稳定;ρ(NH4+-N)在施肥后第1天达到顶峰后下降,然后缓慢下降到第7天趋于稳定水平;施肥后第1天田面水中ρ(TP)即达到峰值,而后在1~7 d内会出现一个下降的趋势.氮肥施入耕层土壤后,无机肥以及无机-有机肥配施的各处理下氮素向田面水的释放集中在1周左右,氮素水平也会在施肥第7天后逐渐趋于稳定,平缓降至施肥前水平[21-23].究其原因:①作物在吸收利用有机肥过程中需要微生物的降解过程,这一过程可使氮素稳定在一个相对比较低的水平[24];②由于有机肥中的营养元素主要以颗粒形态存在并沉降在土壤中,释放速度十分缓慢,只有很小一部分能溶解到田面水中[25-26];③有机肥施用提高微生物利用NH4+-N和NO3--N的能力,致使更多的有效氮素被微生物同化至土壤有机氮库被短暂地储存起来,随后再矿化转变成植物可吸收的有效氮,最终提高土壤氮矿化速率并增加植物有效氮素的吸收,也能有效降低氮的损失风险[27-28].磷素释放现象的可能原因:①施进水田中的水溶性磷肥在2 d内未被土壤所吸附固定,大部分还留在田面水中,致使施用了钙镁磷肥后的第1天各处理中田面水磷素含量达到峰值[29];②磷养分的释放、土壤对磷素的吸附固定、水稻对磷的吸收以及磷素的淋溶下渗等途径,使得水稻田面水ρ(TP)开始逐步降低[30-31].可见,减量施肥并配施一定比例的有机肥,能够在不影响肥力水平的同时,有效降低氮磷流失风险,且合理有效地控制田面水中ρ(TN)与ρ(TP),降低氮磷流失风险.

从施用有机肥梯度的变化也再次证明,田面水中氮素流失风险与有机肥施用量存在极显著正相关关系,与马保国等[32]提出的施肥量越多、流失风险越大的结论一致.因此,该试验中减量配施1 500 kg/hm2有机肥的F1处理,田面水中平均ρ(TN)比FN处理减少10.9%,平均ρ(NH4+-N)比FN处理减少11.5%,能明显降低氮素流失风险,在不降低肥力水平的情况下,F1处理能降低氮素流失水平,降低氮素流失的风险,减少氮肥的环境负荷.有机肥的持续作用,能够调控氮源稳定供应,并缓解周边水体富营养化污染的状况[33].与此同时,提升田间有机肥磷素施用量,在提高田面水中ρ(TP)的同时,也会显著增加磷素流失风险[34],稻田在施用有机肥后,水溶性有机质显著降低土壤对磷的吸附作用,使土壤中磷素的移动性增加,同时提高磷素的浓度水平[35].因此,减量配施1 500 kg/hm2有机肥的F1处理在施磷量高于常规施肥的FN处理10%的情况下,田面水ρ(TP)增加11.7%,表明有机肥的合理施用以及施用有机肥后减少耕层扰动都能够有效控制磷素流失,从而减少农业面源污染.

3.2 有机肥施用对水稻生物量、植株氮磷累积量的影响

该研究中减量配施有机肥处理能够稳定提高水稻产量,增产比例为0.2%~19.8%.随着有机肥配施比例的不断增加,水稻植株地上部分氮磷累积量与施用量呈显著相关,有机肥配施量为6 000 kg/hm2的F4处理下水稻产量与植株氮磷累积量均达到最大值.这说明当有机肥用量增至一定程度时,能够明显促进水稻对氮磷养分的吸收,与已有研究结果[36-39]基本一致.徐明岗等[40]研究表明,在南方双季水稻区连续5 a施用有机肥及化肥-有机肥配施,土壤有机质含量显著增加,较5 a前分别提高了18.5%和37.1%.研究发现,无机-有机肥配施有利于协调水稻个体群体生长及促进群体生长率[41-42],与单施化肥相比,无机-有机肥配施水稻产量不下降或略有提高,可提高植株氮素利用率,显著增加干物质积累量和产量[43].这可能与长期施用有机肥或其他有机物料有利于土壤有机质积累和土壤肥力的提高[44]、增强土壤养分供应能力紧密相关.

减量施肥与无机-有机肥配施对水稻产量虽有一定提升效果,其影响并无显著性差异(P < 0.05),但有机肥用量的增加,能够明显增加水稻产量以及对氮磷养分的吸收,可能是因为施用有机肥能够增加土壤有机质含量和养分的有效性[41, 45-47].而随着时间的延长,有机肥处理能持续供应水稻生长所需的养分,有机肥的增产作用得以充分发挥.该研究中,提高有机肥配施量以增加水稻产量的效果仅是基于第一年的研究结果,更准确的分析还需要进行两年甚至是多年的试验研究.

4 结论

a) 化肥减量20%配施有机肥1 500 kg/hm2的处理(F1)能够有效降低施肥后7 d内田面水中ρ(TN)与ρ(TP),降低氮磷养分地表径流流失风险,是南方双季稻区推荐的一种水稻优化施肥模式.

b) 化肥减量20%配施有机肥能够有效增加水稻籽粒、秸秆产量和地上部分w(TN)、w(TP)以及氮磷累积量,促进双季稻增产.

c) 有机肥替代部分化肥能够在一定程度上保障水稻生产,还能有效资源化利用南方畜禽养殖产生的大量粪便,是区域农业面源污染防治中值得推广的一种种养结合技术模式.

参考文献
[1]
CAO Di, CAO Wenzhi, FANG Jing, et al. Nitrogen and phosphorus losses from agricultural systems in China:a meta-analysis[J]. Marine Pollution Bulletin, 2014, 85(2): 727-732. DOI:10.1016/j.marpolbul.2014.05.041 (0)
[2]
刘钦普. 中国化肥面源污染环境风险时空变化[J]. 农业环境科学学报, 2017, 36(7): 1247-1253.
LIU Qinpu. Spatio-temoral changes of fertilization environmental risk of China[J]. Journal of Agro-Environment Science, 2017, 36(7): 1247-1253. (0)
[3]
WANG Xiaoyan. Management of agricultural nonpoint source pollution in China:current status and challenges[J]. Water Science & Technology, 2006, 53(2): 1-9. (0)
[4]
XING G X, ZHU Z L. An assessment of N loss from agricultural fields to the environment in China[J]. Nutrient Cycling in Agroecosystems, 2000, 57(1): 67-73. DOI:10.1023/A:1009717603427 (0)
[5]
ONGLEY E D, ZHANG Xiaolan, TAO Yu. Current status of agricultural and rural non-point source pollution assessment in China[J]. Environmental Pollution, 2010, 158(5): 1159-1168. DOI:10.1016/j.envpol.2009.10.047 (0)
[6]
GAO Chao, SUN Bo, ZHANG Taolin. Sustainable nutrient management in Chinese agriculture:challenges and perspective[J]. Pedosphere, 2006, 16(2): 119-129. (0)
[7]
赵冬, 颜廷梅, 乔俊, 等. 稻季田面水不同形态氮素变化及氮肥减量研究[J]. 生态环境学报, 2011, 20(4): 743-749.
ZHAO Dong, YAN Tingmei, QIAO Jun, et al. Change of different nitrogen forms in surface water of rice field and reduction of nitrogen fertilizer application in rice season[J]. Ecology and Environmental Sciences, 2011, 20(4): 743-749. DOI:10.3969/j.issn.1674-5906.2011.04.028 (0)
[8]
YADAV R L, DWIVEDI B S, PRASAD K, et al. Yield trends, and changes in soil organic-C and available NPK in a long-term rice-wheat system under integrated use of manures and fertilizers[J]. Field Crops Research, 2000, 68: 219-246. DOI:10.1016/S0378-4290(00)00126-X (0)
[9]
LEE J, CHOI H L. The dynamics of nitrogen derived from a chemical nitrogen fertilizer with treated swine slurry in paddy soil-plant systems[J]. Plos One, 2017, 12(3): e0174747. DOI:10.1371/journal.pone.0174747 (0)
[10]
廖义善, 卓慕宁, 李定强, 等. 适当化肥配施有机肥减少稻田氮磷损失及提高产量[J]. 农业工程学报, 2013, 29(25): 210-217.
LIAO Yishan, ZHUO Muning, LI Dingqiang, et al. Formulated fertilization for reducing nitrogen and phosphorus losses from paddy fields and increasing rice yield[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(25): 210-217. (0)
[11]
MYINT A K, YAMAKAWA T, KAJIHARA Y, et al. Nitrogen dynamics in a paddy field fertilized with mineral and organic nitrogen sources[J]. American-Eurasian Journal of Agricultural and Environmental Science, 2010, 7(2): 221-231. (0)
[12]
张娟, 沈其荣, 张亚丽, 等. 施用预处理稻秆的土壤供氮特征及对冬小麦氮吸收的影响[J]. 植物营养与肥料学报, 2004, 10(1): 24-28.
ZHANG Juan, SHEN Qirong, ZHANG Yali, et al. Effects of application of pretreated rice straw on soil nitrogen supply and nitrogen uptake by winter wheat[J]. Plant Nutrition And Fertilizer Science, 2004, 10(1): 24-28. DOI:10.3321/j.issn:1008-505X.2004.01.005 (0)
[13]
吴美玲, 张绍荣, 龙国, 等. 有机肥控制稻田氮磷流失风险效果初步研究[J]. 湖北农业科学, 2013, 52(18): 4328-4332.
WU Meiling, ZHANG Shaorong, LONG Guo, et al. Preliminary study on the risk controlling effect of organic fertilizer on nitrogen and phosphorus loss in paddy field[J]. Hubei Agricultural Sciences, 2013, 52(18): 4328-4332. DOI:10.3969/j.issn.0439-8114.2013.18.007 (0)
[14]
KAUR T, BRAR B S, DHILLON N S. Soil organic matter dynamics as affected by long-term use of organic and inorganic fertilizers under maize-wheat cropping system[J]. Nutrient Cycling in Agroecosystems, 2008, 81(1): 59-69. DOI:10.1007/s10705-007-9152-0 (0)
[15]
SØRENSEN P. Immobilisation, remineralisation and residual effects in subsequent crops of dairy cattle slurry nitrogen compared to mineral fertiliser nitrogen[J]. Plant & Soil, 2004, 267(1/2): 285-296. (0)
[16]
TIWARI N K, ZAIDI S F A, SINGH C K, et al. Effect of split application of NPK fertility on nutrient uptake by hybrid rice (Oryza sativa L.) and soil health[J]. Agriculture Update, 2016, 11(1): 75-78. DOI:10.15740/HAS/AU/11.1/75-78 (0)
[17]
张奇春, 王光火, 方斌. 不同施肥处理对水稻养分吸收和稻田土壤微生物生态特性的影响[J]. 土壤学报, 2005, 42(1): 117-122.
ZHANG Qichun, WANG Guanghuo, FANG Bin. Influence of fertilization treatment on nutrients uptake by rice and soil ecological characteristics of soil microorganism in paddy field[J]. Acta Pedologica Sinica, 2005, 42(1): 117-122. (0)
[18]
KUMAR V, PRASAD R K. Integrated effect of mineral fertilizers and green manure on crop yield and nutrient availability under rice-wheat cropping system in calciorthents[J]. Journal of the Indian Society of Soil Science, 2008, 56(2): 209-214. (0)
[19]
MEENA R N, SINGH K, RANASINGH N. Yield, economics and nutrient uptake of scented rice (Oryza sativa L.) as influenced by various organic nitrogen sources[J]. Environment & Ecology, 2012, 444-448. (0)
[20]
LIJKLEMA L. Development and eutrophication:experiences and perspectives[J]. Water Science & Technology, 1995, 31(9): 11-15. (0)
[21]
宫亮, 隽英华, 王建忠, 等. 稻田田面水氮磷素动态特征研究[J]. 中国农学通报, 2014, 30(20): 168-174.
GONG Liang, JUAN Yinghua, WANG Jianzhong, et al. Study on the variations of nitrogen and phosphorus in surface water body of paddy field[J]. Chinese Agricultural Science Bulletin, 2014, 30(20): 168-174. DOI:10.11924/j.issn.1000-6850.2013-2619 (0)
[22]
张志剑, 董亮, 朱荫湄. 水稻田面水氮素的动态特征、模式表征及排水流失研究[J]. 环境科学学报, 2001, 21(4): 475-480.
ZHANG Zhijian, DONG Liang, ZHU Yinmei. The dynamic characteristics and modeling of nitrogen in paddy field surface water and nitrogen loss from field drainage[J]. Acta Scientiae Circumstantiae, 2001, 21(4): 475-480. DOI:10.3321/j.issn:0253-2468.2001.04.019 (0)
[23]
纪雄辉, 郑圣先, 鲁艳红, 等. 施用尿素和控释氮肥的双季稻田表层水氮素动态及其径流损失规律[J]. 中国农业科学, 2006, 39(12): 2521-2530.
JI Xionghui, ZHENG Shengxian, LU Yanhong, et al. Dynamics of floodwater nitrogen and its runoff loss, urea and controlled release nitrogen fertilizer application regulation in rice[J]. Scientia Agricultura Sinica, 2006, 39(12): 2521-2530. DOI:10.3321/j.issn:0578-1752.2006.12.017 (0)
[24]
LI H, HOU J, LIU X, et al. Combined determination of specific surface area and surface charge properties of charged particles from a single experiment[J]. Soil Science Society of America Journal, 2011, 75(6): 2128. DOI:10.2136/sssaj2010.0301 (0)
[25]
黄卉, 王波, 朱利群, 等. 稻田处理养殖场粪便的氮磷动态效应与污染风险研究[J]. 农业环境科学学报, 2009, 28(4): 736-743.
HUANG Hui, WANG Bo, ZHU Liqun, et al. Nitrogen and phosphorus dynamics and pollution risk of potted rice treated with manure from livestock farm[J]. Journal of Agro-Environment Science, 2009, 28(4): 736-743. DOI:10.3321/j.issn:1672-2043.2009.04.018 (0)
[26]
万大娟, 苏文幸, 许振成, 等. 水稻田对猪粪的最大消纳能力研究[J]. 环境科学研究, 2013, 26(10): 1118-1125.
WAN Dajuan, SU Wenxing, XU Zhencheng, et al. Determination on maximum capacity of pig-manure fertilization for the rice paddy in subtropical areas[J]. Research of Environmental Sciences, 2013, 26(10): 1118-1125. (0)
[27]
LUXHØI J, ELSGAARD L, THOMSEN I K, et al. Effects of long-term annual inputs of straw and organic manure on plant N uptake and soil N fluxes[J]. Soil Use & Management, 2010, 23(4): 368-373. (0)
[28]
EBRAYI K N, PATHAK H, KALRA N, et al. Simulation of nitrogen dynamics in soil using infocrop model[J]. Environmental Monitoring & Assessment, 2007, 131(1/2/3): 451-465. (0)
[29]
肖建南, 张爱平, 刘汝亮, 等. 生物炭施用对稻田氮磷肥流失的影响[J]. 中国农业气象, 2017, 38(3): 163-171.
XIAO Jiannan, ZHANG Aiping, LIU Ruliang, et al. Effects of biochar application on the losses of nitrogen and phosphorus in surface water of paddy field[J]. Chinese Journal of Agrometeorology, 2017, 38(3): 163-171. DOI:10.3969/j.issn.1000-6362.2017.03.004 (0)
[30]
MCDOWELL R W, SHARPLEY A N. Variation of phosphorus leached from Pennsylvanian soils amended with manures, composts or inorganic fertilizer[J]. Agriculture Ecosystems & Environment, 2004, 102(1): 17-27. (0)
[31]
朱坚, 纪雄辉, 田发祥, 等. 典型双季稻田施磷流失风险及阈值研究[J]. 农业环境科学学报, 2017, 36(7): 1425-1433.
ZHU Jian, JI Xionghui, TIAN Faxiang, et al. Research on P loss risk and threshold value in typical double-cropping rice field[J]. Journal of Agro-Environment Science, 2017, 36(7): 1425-1433. (0)
[32]
马保国, 刘永朝, 薛进军. 冀南稻麦轮作区化肥施用与氮磷流失状况分析[J]. 灌溉排水学报, 2007, 26(3): 72-74.
MA Baoguo, LIU Yongchao, XUE Jinjun. Application of chemical fertilizer and the loss of nitrogen and phosphorus in rice and wheat rotation soil in South Hebei[J]. Journal of Irrigation and Drainage, 2007, 26(3): 72-74. (0)
[33]
郑小龙, 吴家森, 陈裴裴, 等. 不同施肥与生物质炭配施对水稻田面水氮磷流失及产量的影响[J]. 水土保持学报, 2013, 27(4): 39-43.
ZHENG Xiaolong, WU Jiasen, CHEN Peipei, et al. Effects of reducing nitrogen and biomass carbon fertilization on loss of nitrogen and phosphorus in surface water of paddy field and grain production[J]. Journal of Soil and Water Conservation, 2013, 27(4): 39-43. (0)
[34]
孙瑞娟, 王德建, 林静慧, 等. 有机肥施用对水田土壤溶液氮磷动态变化及环境的潜在影响[J]. 土壤, 2009, 41(6): 907-911.
SUN Ruijuan, WANG Dejian, LIN Jinghui, et al. Variation of N & P contents in paddy soil water and its potential environmental effect under pig manure application[J]. Soils, 2009, 41(6): 907-911. DOI:10.3321/j.issn:0253-9829.2009.06.010 (0)
[35]
OHNO T, CRANNELL B S. Green and animal manure-derived dissolved organic matter effects on phosphorus sorption[J]. Journal of Environmental Quality, 1996, 25(5): 1137-1143. (0)
[36]
CONACHER J, CONACHER A. Organic farming and the environment, with particular reference to Australia:a review[J]. Biological Agriculture & Horticulture, 1998, 16(2): 145-171. (0)
[37]
GOYAL S, SAKAMOTO K, INUBUSHI K, et al. Long-term effects of inorganic fertilization and organic amendments on soil organic matter and soil microbial properties in Andisols[J]. Archives of Agronomy & Soil Science, 2006, 52(6): 617-625. (0)
[38]
宁川川, 王建武, 蔡昆争. 有机肥对土壤肥力和土壤环境质量的影响研究进展[J]. 生态环境学报, 2016, 25(1): 175-181.
NING Chuanchuan, WANG Jianwu, CAI Kunzheng. The effects of organic fertilizers on soil fertility and soil environmental quality:a review[J]. Ecology & Environmental Sciences, 2016, 25(1): 175-181. (0)
[39]
陈贵, 赵国华, 张红梅, 等. 长期施用有机肥对水稻产量和氮磷养分利用效率的影响[J]. 中国土壤与肥料, 2017(1): 92-97.
CHEN Gui, ZHAO Guohua, ZHANG Hongmei, et al. Effect of long-term organic fertilizers application on rice yield, nitrogen and phosphorus use efficiency[J]. Soils and Fertilizers Sciences in China, 2017(1): 92-97. (0)
[40]
徐明岗, 李冬初, 李菊梅, 等. 化肥有机肥配施对水稻养分吸收和产量的影响[J]. 中国农业科学, 2008, 41(10): 3133-3139.
XU Minggang, LI Dongchu, LI Jumei, et al. Effects of organic manure application combined with chemical fertilizers on nutrients absorption and yield of rice in Hunan of China[J]. Scientia Agricultura Sinica, 2008, 41(10): 3133-3139. DOI:10.3864/j.issn.0578-1752.2008.10.029 (0)
[41]
李先, 刘强, 荣湘民, 等. 有机肥对水稻产量和品质及氮肥利用率的影响[J]. 湖南农业大学学报(自然科学版), 2010, 36(3): 258-262.
LI Xian, LIU Qiang, RONG Xiangmin, et al. Effects of organic fertilizers on yield and quality of rice grains and nitrogen use efficiency[J]. Journal of Hunan Agricultural University(Natural Sciences), 2010, 36(3): 258-262. (0)
[42]
AULAKH M S, KHERA T S, DORAN J W, et al. Yields and nitrogen dynamics in a rice-wheat system using green manure and inorganic fertilizer[J]. Soil Science Society of America Journal, 2000, 64(5): 1867-1876. DOI:10.2136/sssaj2000.6451867x (0)
[43]
唐海明, 程爱武, 徐一兰, 等. 长期有机无机肥配施对双季稻区水稻干物质积累及产量的影响[J]. 农业现代化研究, 2015, 36(6): 1091-1098.
TANG Haiming, CHENG Aiwu, XU Yilan, et al. Effects of long-term mixed application of organic and inorganic fertilizers on dry matter accumulation and yield of rice in double cropping rice fields[J]. Research of Agricultural Modernization, 2015, 36(6): 1091-1098. (0)
[44]
BIELDERS C L, GRYMONPREZ B. Raindrop impact:a neglected but potentially major contributor to particle mobilization in soils[J]. Soil Science Society of America Journal, 2010, 74(5): 1446-1456. DOI:10.2136/sssaj2009.0245 (0)
[45]
POWAR S L. Effect of organic and inorganic fertilizers on rice yield, nutrient availability and uptake in medium black soil[J]. Journal of Maharashtra Agricultural Universities, 2000, 29(2): 231-233. (0)
[46]
SUBEHIA S K, SEPEHYA S, RANA S S, et al. Long-term effect of organic and inorganic fertilizers on rice (Oryza Sativa L.)-wheat (Triticum Aestivum L.) yield, and chemical properties of an acidic soil in the Western Himalayas[J]. Experimental Agriculture, 2013, 49(3): 382-394. DOI:10.1017/S0014479713000173 (0)
[47]
DAR S R, THOMAS T, KHAN I M, et al. Effect of nitrogen fertilizer with mushroom compost of varied C :N ratio on nitrogen use efficiency, carbon sequestration and rice yield[J]. Communications in Biometry & Crop Science, 2009, 4(1): 31-39. (0)