环境科学研究  2020, Vol. 33 Issue (1): 227-234  DOI: 10.13198/j.issn.1001-6929.2018.11.30

引用本文  

胡双庆, 袁哲军, 沈根祥. 典型畜禽粪污中雌激素排放特征[J]. 环境科学研究, 2020, 33(1): 227-234.
HU Shuangqing, YUAN Zhejun, SHEN Genxiang. Characteristics of Estrogen in Typical Livestock and Poultry Waste[J]. Research of Environmental Sciences, 2020, 33(1): 227-234.

基金项目

国家自然科学基金项目(No.21607105);国家水体污染控制与治理科技重大专项(No.2017ZX07207002);上海市环保科研项目(No.2016-3)
National Natural Science Foundation of China (No.21607105); National Water Pollution Control and Treatment Science and Technology Major Project of China (No.2017ZX07207002); Scientific Research Program of Shanghai Environmental Protection Bureau, China (No.2016-3)

责任作者

沈根祥(1965-), 男, 浙江湖州人, 教授级高工, 博士, 主要从事生态毒理和农村环保研究, shengx@saes.sh.cn.

作者简介

胡双庆(1978-), 男, 四川自贡人, 高级工程师, 博士, 主要从事化学品生态毒理学研究, husq@saes.sh.cn

文章历史

收稿日期:2018-09-17
修订日期:2018-11-13
典型畜禽粪污中雌激素排放特征
胡双庆1, 袁哲军1,2, 沈根祥1    
1. 上海市环境科学研究院, 上海 200233;
2. 上海纺织节能环保中心, 上海 200082
摘要:为探究畜禽粪污中雌激素的排放水平和分布特征,采用固相萃取-高效液相色谱串联质谱(SPE-HPLC-MS/MS)分析方法,对上海市典型畜禽养殖类型(猪、奶牛、鸡)排放粪污样品中雌激素含量进行测定.结果表明:猪场粪便、沼渣肥、还田土壤、尿液和沼液样品中5种雌激素(E1,雌酮;E2,雌二醇;E3,雌三醇;EE2,炔雌醇;DES,己烯雌酚)总量分别为94.5 ng/g、35.1 ng/g、0.1 ng/g和8 882.2 ng/L、4 388.6 ng/L,其中E1是排泄物中最主要的雌激素;奶牛场粪便、堆肥、还田土壤、尿液、污水进水及出水样品中雌激素总量分别为84.6 ng/g、16.2 ng/g、0.1 ng/g和2 636.7 ng/L、2 605.6 ng/L、615.7 ng/L,其中E1和E2含量最高;鸡场粪便和堆肥样品中雌激素总量分别为60.9和17.5 ng/g.研究显示,猪场、奶牛场和鸡场排泄物中均含有一定数量的天然和人工合成雌激素,雌激素含量水平总体表现为粪便高于有机肥、尿液高于污水;通过畜禽粪污向环境中排放的雌激素总量表现为猪场>奶牛场>鸡场;厌氧发酵对猪场污水中雌激素具有一定的去除效果,而污水厌氧-好氧净化处理和固体粪高温好氧堆肥对奶牛场排泄物中雌激素具有较高的去除效果.
关键词雌激素    固相萃取-高效液相色谱串联质谱法(SPE-HPLC-MS/MS)    畜禽粪污    排放特征    
Characteristics of Estrogen in Typical Livestock and Poultry Waste
HU Shuangqing1, YUAN Zhejun1,2, SHEN Genxiang1    
1. Shanghai Academy of Environmental Sciences, Shanghai 200233, China;
2. Shanghai Textile Energy Saving & Environmental Protection Center, Shanghai 200082, China
Abstract: To investigate the levels and distribution characteristics of estrogens in livestock and poultry waste in Shanghai, the contents of five estrogens, including E1, E2, E3, EE2, and DES, in animal waste samples collected from typical swine farms, chicken farms and dairy farms were measured by solid phase extraction-high performance liquid chromatography-tandem mass spectrometry (SPE-HPLC-MS/MS). The results showed that the total amount of estrogens in the manure, biogas residue, soil, urine and biogas slurry samples of two swine farms was 94.5 ng/g, 35.1 ng/g, 0.1 ng/g, 8882.2 ng/L and 4388.6 ng/L, respectively, and E1 was the primary constituent in the excrement. The total amount of estrogens in manure, composting, soil, urine, sewage influent and sewage effluent samples of three dairy farms was 84.6 ng/g, 16.2 ng/g, 0.1 ng/g, 2636.7 ng/L, 2605.6 ng/L and 615.7 ng/L, respectively, and the concentrations of E1 and E2 were the highest. In the typical chicken farm, the total amount of estrogens in manure and composting samples was 60.9 and 17.5 ng/g, respectively. The animal waste from all farms contained both natural and synthetic estrogens, and generally the estrogen concentration was higher in the manure samples than fertilizer samples, and in the urine samples than sewage samples. The total amount of estrogens released into the environment was in the following order:swine farms, dairy farms and chicken farms. In conclusion, anaerobic fermentation had a certain effect on removing estrogens from swine sewage, while composting and sewage treatment facilities were more effective in removing estrogens from dairy waste.
Keywords: estrogen    SPE-HPLC-MS/MS    livestock and poultry waste    emission characteristics    

规模化畜禽养殖业在快速发展的同时也给环境带来了雌激素污染风险.据估计,环境中90%的天然雌激素来源于畜禽动物排泄物[1-2],且排泄物中雌激素的种类和含量因畜禽动物类型、性别及其生长发育阶段的不同而存在差异[3],猪和家禽主要通过尿液排放雌激素,而奶牛和羊主要通过粪便排放雌激素[4],猪主要排放E1(estrone,雌酮)、E2(17β-estradiol,雌二醇)和E3(estriol,雌三醇),而奶牛主要排放E1和E2[3, 5].人工合成雌激素炔雌醇(17β-ethinylestradiol,EE2)和己烯雌酚(diethylstilbestrol,DES)因具有促进动物生长和体质量增加的作用,而被用作激素类药物或饲料添加剂应用到畜禽养殖过程中.进入环境中的天然和人工合成雌激素具有很强的内分泌干扰活性[6-7],如它们能够在ng/L痕量水平诱导雄鱼雌性化[8-9],致使鱼类胚胎发育迟滞和畸形[10-11],胁迫微生物群落结构发生改变[12-13].因此,畜禽养殖业雌激素污染风险应当引起足够重视.

近年来,畜禽养殖业雌激素污染及其控制逐渐成为研究热点[14-16].目前对河流水体中雌激素污染特征进行研究的报道[17-19]较多,但对畜禽养殖场雌激素的排放特征研究报道相对较少.再者,畜禽粪污基质较为复杂,样品前处理难度大,这给畜禽粪污雌激素研究带来了挑战.上海市畜禽养殖规模大、养殖类型多样化,养殖过程雌激素污染风险不容忽视.因此,该研究通过建立固相萃取-高效液相色谱串联质谱(SPE-HPLC-MS/MS)分析方法,对上海市典型畜禽养殖类型排放的5种天然和人工合成雌激素(E1、E2、E3、EE2和DES)进行定量检测,分析其总体分布特征和检出水平,并通过比较畜禽排泄物经处理设施处理前后雌激素含量水平的差异,分析不同处理方式下雌激素的去除效率,以期为畜禽养殖雌激素污染风险管控提供参考.

1 材料与方法 1.1 试剂与仪器

仪器:5500Q-trap高效液相色谱串联质谱仪(美国AB公司),配MultiQuant 3.0.2软件;12通道固相萃取装置(美国Waters公司);超声波清洗器(KQ3200E,昆山市超声仪器有限公司);pH计(S220,梅特勒-托多仪器(上海)有限公司);Milli-Q超纯水器(美国Millipore公司);氮吹仪(Anpel 12通道,上海安谱实验科技股份有限公司);旋转蒸发仪(艾卡仪器设备有限公司上海分公司);微波萃取仪(MARS CLSSIC,美国CEM公司);低温真空冷冻干燥机(上海昊博低温真空有限公司).

试剂:甲醇、乙腈、正己烷、二氯甲烷均为HPLC级,均购自美国Tedia公司. E1(雌酮,纯度为99.3%,)、E2(17β-雌二醇,纯度为97.5%)、E3(雌三醇,纯度为99.5%)、EE2(炔雌醇,纯度为99.0%)、DES(己烯雌酚,纯度为99.5%)、17β-E2-d3(17β-雌二醇-d3,纯度为98.0%)、EE2-d4(炔雌醇-d4,纯度为98.0%)和DES-d8(己烯雌酚-d8,纯度为98.0%)均购自德国Dr. Ehrenstorfer公司.上述标准品均用甲醇配成标准储备液.混和标准溶液中5种物质的含量均为100 mg/L.根据需要用甲醇配制标准工作溶液,于4 ℃冰箱中保存.

1.2 样品的采集与保存

选择上海市畜禽养殖业相对集中的区域,针对3种不同养殖类型(猪、奶牛、鸡)分别采集粪便、尿液、有机肥和污水样品,向样品中加入4 mol/L的盐酸防止微生物对目标物质的降解作用.样品快速运回实验室后,放入-20 ℃冰箱冷冻保存.试验前取出解冻,粪便样品经低温真空冷冻干燥机干燥24 h后待用.不同畜禽养殖场的养殖规模、粪便污水处理方式等基本信息见表 1.

表 1 不同畜禽养殖场养殖规模及粪污处理方式 Table 1 The farming scales and manure treatment methods of different livestock and poultry farms
1.3 液体样品前处理方法

分别量取10 mL尿液样品和100 mL污水样品,用超纯水稀释至500 mL,水样经玻璃纤维滤纸(孔径0.7 μm)过滤后,在每个样品中均加入100 ng的3种内标物质(17β-E2-d3、EE2-d4和DES-d8),其中,17β-E2-d3作为E1、E2和E3内标,EE2-d4作为EE2内标,DES-d8作为DES内标.调水样pH为3,进行Oasis HLB柱(200 mg,6 mL,美国Waters公司)固相萃取净化.依次用6 mL甲醇、6 mL水活化HLB固相萃取小柱.上样速率为3~6 mL/min,上样结束后,依次用5 mL超纯水、5 mL 5%的甲醇水溶液淋洗小柱,减压抽干10 min,最后用10 mL甲醇分两次洗脱[20].洗脱液在40 ℃下氮吹至近干,用8 mL V(正己烷) :V(二氯甲烷)为3 :1的溶液重新溶解,进行Florisil固相萃取柱(500 mg,6 mL,美国Waters公司)净化,用5 mL二氯甲烷和5 mL V(正己烷) :V(二氯甲烷)为3 :1的溶液先后进行活化,样品过柱流速为1 mL/min,过柱完后,用6 mL V(甲醇) :V(二氯甲烷)为1 :4的溶液进行洗脱,洗脱液氮吹至近干.用1 mL V(甲醇) :V(水)为7 :3的溶液重新溶解,过0.22 μm微孔滤膜到进样瓶中,进行SPE-HPLC-MS/MS测定.

1.4 固体样品前处理方法

称取粪便、有机肥和土壤样品各5.0 g(干质量),分别加入100 ng内标物.利用微波辅助萃取(MAE)方法提取固体样品中的雌激素.微波萃取剂选取50 mL V(甲醇) :V(丙酮)为1 :3的溶液,萃取温度为100 ℃,萃取功率为800 W,萃取时间梯度设置为温度爬升10 min,保持30 min,降温20 min.萃取结束后,转移所有上清液于100 mL玻璃瓶中,转移至旋转蒸发仪(40 ℃,80 r/min,-75 kPa)中浓缩至10 mL,经氮吹仪吹至近干.用5 mL乙腈重新溶解,然后加入5 mL正己烷进行液-液萃取(LLE)后,移除正己烷层,该操作重复两遍,以除去油类物质.所得乙腈层溶液用超纯水稀释至500 mL,调节pH至3.然后经Oasis HLB柱固相萃取净化,操作同1.3节液体样品处理方法.

1.5 HPLC-MS/MS分析

采用AB 5500 Q-trap高效液相色谱串联质谱仪(美国AB公司),配岛津30A液相色谱,对5种目标雌激素进行检测.其中,色谱柱选用Shim-Pack XR-ODSII C18(100 mm×2 mm,1.0 μm)型号,流动相为0.1%氨水和乙腈. 5种雌激素高效液相色谱-串联质谱分析条件见表 2.

表 2 高效液相色谱-串联质谱分析参数 Table 2 The parameters of high performance liquid chromatography-tandem mass spectrometry analysis
1.6 质量保证和质量控制

用甲醇溶液配制5种雌激素的系列混合标准溶液,ρ(雌激素)为1.0~500 μg/L,采用内标法定量,向进样瓶中分别加入100 ng的17β-E2-d3、EE2-d4和DES-d8内标液,在选定的色谱和质谱条件下进行测定,得到5种雌激素的线性相关系数(r2)均大于0.995,表明所建立的线性关系良好.在该方法条件下获得各目标物的LOD(检测限)范围为0.17~1.57 μg/L,LOQ(定量限)范围为0.57~5.25 μg/L.

选择4种环境样品(粪便、有机肥、尿液、污水),设置100和500 ng两个加标水平进行加标回收率试验.按1.3节和1.4节优化的前处理方法进行萃取、净化和浓缩,用1.5节建立的分析方法测定各目标物的含量,并计算回收率与相对标准偏差(见表 3),得到粪便样品中目标物回收率范围为61.3%~91.2%,相对标准偏差小于7.1%;有机肥样品回收率为66.2%~106.3%,相对标准偏差小于6.9%;尿液样品回收率范围为65.4%~102.2%,相对标准偏差小于7.5%;污水样品回收率范围为64.8%~89.9%,相对标准偏差小于6.5%;表明所建立的方法对畜禽粪污环境样品中雌激素的检测分析具有良好的准确度和精密度.

表 3 不同环境样品中雌激素的回收率和相对标准偏差(n=3) Table 3 The recoveries and relative standard deviations of estrogens in different environmental samples (n=3)
2 结果与讨论 2.1 畜禽排泄物中雌激素总体分布特征 2.1.1 畜禽粪便和有机肥中各雌激素检测水平

分别对采集的18个粪便样品(含平行样,包括9个奶牛粪、6个猪粪和3个鸡粪样品)和18个有机肥样品(含平行样,包括3个奶牛场堆肥、6个奶牛场沼渣肥、6个猪场沼渣肥和3个鸡场堆肥样品)中5种雌激素含量进行了测定(见图 1).

注:箱式图中上下水平线分别代表最小值和最大值;×代表第1和99百分位数;箱子上下底和中间水平线分别代表第25、75和50百分位数;含量平均值用小方块()表示. 图 1 粪便和有机肥样品中5种雌激素的含量范围 Fig.1 The concentration ranges of five estrogens in animal feces and fertilizer samples

图 1可见,粪便样品中天然雌激素w(E1)、w(E2)和w(E3)范围分别为26.5~55.5、19.1~45.2和nd~16.3 ng/g,检出率分别为100%、100%和50%;人工合成雌激素w(EE2)和w(DES)范围分别为nd~8.3和nd~11.2 ng/g,检出率分别为83.3%和66.7%. ZHANG等[14]对上海市和浙江省13个畜禽养殖场进行了布点采样,测得粪便样品中w(E1)、w(E2)、w(E3)和w(EE2)的范围分别为nd~12.8、nd~ 101.0、nd~13.1和nd~10.4 ng/g,表明两个地区雌激素检出情况相似,对比分析表明,上海市畜禽养殖业雌激素排放水平较稳定.另外,该研究发现,E3仅在猪粪和鸡粪中被检出,奶牛粪便中未检出E3,这与奶牛主要分泌雌激素E1和E2、并不产生E3的研究报道[21]相一致,这进一步证明了环境中雌激素种类和畜禽养殖类型的相关性.在畜禽排泄物中检出人工合成雌激素EE2和DES,分析原因可能是EE2和DES被作为动物饲料添加剂用于畜禽养殖业,最终会随畜禽排泄物进入环境中.

图 1可见,有机肥样品中w(E1)、w(E2)、w(E3)、w(EE2)和w(DES)范围分别为3.8~16.3、1.5~10.5、nd~4.2、nd~4.8和nd~5.4 ng/g,检出率分别为100%、100%、50%、66.7%和33.3%.与粪便样品相比,有机肥样品中雌激素总体含量明显降低,各雌激素检出范围缩小,且人工合成雌激素EE2和DES的检出率也有所降低.综合分析表明,粪便经过有机肥处理过程后,其中的雌激素会发生降解,从而其含量下降,检出率降低.

2.1.2 尿液和污水中各雌激素检测水平

分别对采集的15个尿液样品(含平行样,9个奶牛尿液样品和6个猪尿样品)和18个污水样品(含平行样,3个奶牛场污水进水、3个奶牛场污水出水、6个奶牛场厌氧发酵污水和6个猪场厌氧发酵污水样品)中5种雌激素含量进行测定,各雌激素检出情况如图 2所示.

图 2 尿液和污水样品中5种雌激素的含量范围 Fig.2 The concentration ranges of five estrogens in animal urine and sewage samples

尿液样品天然雌激素ρ(E1)、ρ(E2)和ρ(E3)范围分别为1 087.0~4 380.3、1 144.5~3 640.0和nd~1 322.1 ng/L;污水样品中分别为391.5~3 735.0、169.8~1 201.4和nd~170.3 ng/L,各雌激素的检出含量较高,检出范围较宽. Raman等[22]发现某猪场氧化塘中ρ(E1)和ρ(E2)分别为5 900.4~14 000.6和1 800.5~3 300.2 ng/L,然而ZHENG等[23]发现某畜禽场污水处理设施中雌激素物质总量低于5.0 ng/L.分析原因,可能与畜禽养殖类型和畜禽动物生长期、污水处理方式和处理程度的差异有关,导致天然雌激素的含量水平差异较大,检出范围较宽. E1、E2、E3和DES在尿液和污水样品中的检出率相近. EE2在尿液样品中未被检出,但在污水样品中检出率达到100%,ρ(EE2)范围为4.8~81.7 ng/L. LIU等[24]发现,某养殖场经处理的污水中ρ(EE2)为124~285 ng/L,而未经处理的污水中ρ(EE2)高达410 ng/L;ZHANG等[14]测得某猪场氧化塘污水中ρ(EE2)为155 ng/L.然而,也有相关文献报道[25-26]EE2含量低于检测限.因此,污水中EE2会因处理设施和处理程度的不同,而引起降解率出现较大差异.

2.2 典型畜禽场雌激素的排放状况 2.2.1 典型猪场雌激素排放情况

对某规模化养猪场进行加密布点采样,共采集5种样品——粪便、沼渣肥、还田土壤、尿液以及沼液样品,这些样品中雌激素含量如表 4所示,5种雌激素总量分布见图 3.

表 4 典型猪场样品中5种雌激素含量(n=3) Table 4 The concentrations of five estrogens in the typical swine farm samples(n=3)

注:粪便、沼渣肥、还田土壤样品中雌激素含量单位为ng/g;尿液和沼液中雌激素含量单位为ng/L. 图 3 典型猪场各样品中雌激素总量 Fig.3 Total estrogen contents in the samples from the swine farms

天然雌激素E1在粪便和尿液样品中检出含量均为最高,分别占样品中雌激素总量的45%和48%,这与Johnson等[27-28]发现E1是猪排泄物中最主要的雌激素结果相符.该养猪场粪污处理利用方式为沼气工程模式,主要通过厌氧发酵生产沼气,并产生沼液和沼渣肥.由图 3可见,猪场粪便和尿液中雌激素总量分别为94.5 ng/g和8 882.2 ng/L,粪污经处理后产生的沼渣肥和沼液中雌激素总量分别为35.1 ng/g和4 388.6 ng/L,还田土壤中雌激素总量为0.1 ng/g,表明该养猪场厌氧发酵处理工艺对猪场污水中雌激素的去除效果一般,未被去除的雌激素会随粪肥还田进入农田土壤,给农田土壤环境带来雌激素污染风险,相关研究[14]发现,组合式气浮污水处理设施对畜禽排泄物中雌激素的去除率高达97%,其中对E1和E2的去除率达100%,而厌氧发酵处理对雌激素的去除率低于50%.对比分析表明,污水处理设施的去除效率可能与粪污处理过程中的好氧-缺氧环境有关,好氧环境能够促进雌激素的吸附和降解[29],而缺氧(厌氧)状态下雌激素的降解受到抑制,EE2甚至不能得到降解[30-31].因此,为了加强对猪养殖过程雌激素排放的污染管控,可通过优化养殖场粪污处理利用方式,提高粪污中雌激素的去除效果,从而降低雌激素进入周边环境的风险.

2.2.2 典型奶牛场雌激素排放情况

对某规模化奶牛场进行加密布点采样,共采集6种样品——粪便、尿液、堆肥、污水进水、污水出水(污水采用厌氧-好氧净化处理)和还田土壤样品,这些样品中5种雌激素含量如表 5所示.

表 5 典型奶牛场样品中5种雌激素含量(n=3) Table 5 The concentrations of five estrogens in the typical dairy farm samples(n=3)

在奶牛场粪便和尿液样品中E1和E2的含量均较高,分别占粪便样品中雌激素总量的61%和25%以及尿液样品中雌激素总量的41%和57%,表明E1和E2是奶牛排泄物中最主要的雌激素,这与Hanselman等[3-4]研究奶牛排泄物中雌激素的分布结果相一致.研究报道[7, 32]显示,E2具有很强的内分泌干扰活性,故应加强对奶牛养殖业粪污雌激素污染风险的管控.由图 4可见,奶牛粪便和尿液中雌激素总量分别为84.6 ng/g和2 636.7 ng/L,比猪粪和猪尿中低12%和70%,表明猪排泄物中雌激素含量高于奶牛排泄物.粪便经高温好氧堆肥后,雌激素总量为16.2 ng/g,下降了81%,其中E1和E2含量显著降低. ZHANG等[33]研究显示,堆肥处理对奶牛粪便中雌激素的去除率达55.8%;ZHENG等[23]研究发现,粪便经堆肥3个月后,雌激素的去除率高达80%.对比分析表明,该奶牛场的好氧堆肥处理方式可有效去除固体粪便中的雌激素.在还田土壤样品中,雌激素总量为0.1 ng/g,只有DES以较低含量被检出,其他雌激素均未被检出.由于土壤环境中存在各种吸附和降解作用[34],使得进入土壤中的雌激素含量降低.污水经处理设施处理后,雌激素总量由2 605.6 ng/L降至615.7 ng/L,E1、E2和EE2含量显著降低,去除率分别达72%、82%和84%,且在污水出水中DES含量低于检测限.该奶牛场污水经场区内预处理达到纳管标准后接入污水处理厂污水收集管网,采用的污水处理方式为厌氧-好氧净化处理.这表明该污水处理方式对天然和人工合成雌激素均具有较高的去除效果,可能是微生物厌氧与好氧降解以及污泥吸附等共同作用的结果[24].

注:粪便、堆肥、还田土壤样品中雌激素含量单位为ng/g,尿液、污水进水和污水出水中雌激素含量单位为ng/L. 图 4 典型奶牛场各样品中雌激素总量 Fig.4 Total estrogen contents in the samples from the dairy farms
2.2.3 典型鸡场雌激素排放情况

对某规模化养鸡场进行平均布点采样,共采集3种样品,包括粪便、堆肥和还田土壤样品,这些样品中雌激素含量如图 5所示.鸡场雌激素的排放特征与猪场和奶牛场有较大差异.鸡主要排泄固体粪便,产生的尿液量很少,因此该研究未采集液体样品.鸡粪样品中5种雌激素均被检出,总量达60.9 ng/g,比猪粪和奶牛粪雌激素总量低36%和28%,表明鸡对环境中雌激素的贡献率远低于猪和奶牛.堆肥样品中未检出EE2,其他4种雌激素总量为17.5 ng/g,相较于粪便样品雌激素总量下降71%,表明雌激素在高温堆肥过程中得到了较好的降解. 5种雌激素在鸡粪还田土壤中均未被检出.

图 5 典型鸡场样品中5种雌激素含量 Fig.5 The concentration distribution of five estrogens in the samples from the chicken farm
3 结论

a) 上海市典型猪场、奶牛场和鸡场排泄物中均含有一定数量的天然和人工合成雌激素,其中,猪场粪便和尿液中5种雌激素总量分别为94.5 ng/g和8 882.2 ng/L,奶牛场粪便和尿液中总量分别为84.6 ng/g和2 636.7 ng/L,鸡场粪便中总量为60.9 ng/g.

b) E1为猪排泄物中最主要的雌激素,分别占粪便和尿液样品中雌激素总量的45%和48%,E1和E2为奶牛排泄物中最主要的雌激素,分别占粪便样品中总量的61%和25%,占尿液样品中总量的41%和57%,且通过粪便和尿液向环境中排放的5种雌激素总量表现为猪场>奶牛场>鸡场.

c) 厌氧发酵处理对猪场污水中雌激素具有一定的去除效果,经处理后沼液中雌激素总量降至4 388.6 ng/L,固体粪高温堆肥和污水厌氧-好氧净化处理对奶牛排泄物中雌激素具有较好的去除效果,粪便经堆肥处理后雌激素总量降至16.2 ng/g,污水经处理后雌激素总量降至615.7 ng/L.

参考文献
[1]
KHANAL S K, XIE Bin, THOMPSON M L, et al. Fate, transport, and biodegradation of natural estrogens in the environment and engineered systems[J]. Environmental Science & Technology, 2006, 40(21): 6537-6546. (0)
[2]
刘敏, 岳波, 尹平河, 等. 畜禽粪便改良土壤中E1和E2自然降解的影响因素[J]. 环境科学研究, 2011, 24(10): 1166-1171.
LIU Min, YUE Bo, YIN Pinghe, et al. Factors influencing the natural degradation of E1 (estrone) and E2(17β-estradiol) in soils amended by animal manure[J]. Research of Environmental Sciences, 2011, 24(10): 1166-1171. (0)
[3]
HANSELMAN T A, GRAETZ D A, WILKIE A C. Manure-borne estrogens as potential environmental contaminants:a review[J]. Environmental Science & Technology, 2003, 37(24): 5471-5478. (0)
[4]
COMBALBERT S, HERNANDEZ-RAQUET G. Occurrence, fate, and biodegradation of estrogens in sewage and manure[J]. Applied Microbiology & Biotechnology, 2010, 86(6): 1671-1692. (0)
[5]
SHORE L S, SHEMESH M. Naturally produced steroid hormones and their release into the environment[J]. Pure & Applied Chemistry, 2003, 75(11/12): 1859-1871. (0)
[6]
JOBLING S, COEY S, WHITMORE J G, et al. Wild intersex roach(Rutilus rutilus)have reduced fertility[J]. Biology of Reproduction, 2002, 67(2): 515-524. DOI:10.1095/biolreprod67.2.515 (0)
[7]
LUTZ I, KLOAS W. Amphibians as a model to study endocrine disruptors:I.environmental pollution and estrogen receptor binding[J]. Science of the Total Environment, 1999, 225(1/2): 49-57. (0)
[8]
HANSEN P, DIZER H, HOCK B, et al. Vitellogenin-a biomarker for endocrine disruptors[J]. Trends in Analytical Chemistry, 1998, 17(7): 448-451. DOI:10.1016/S0165-9936(98)00020-X (0)
[9]
JOBLING S, NOLAN M, TYLER C R, et al. Widespread sexual disruption in wild fish[J]. Environmental Science & Technology, 1998, 32(17): 2498-2506. (0)
[10]
HU Shuangqing, ZHANG Hongchang, SHEN Genxiang, et al. Effects of 17β-estradiol and 17α-ethinylestradiol on the embryonic development of the clearhead icefish(Protosalanx hyalocranius)[J]. Chemosphere, 2017, 176: 18-24. DOI:10.1016/j.chemosphere.2017.02.094 (0)
[11]
NASH J P, KIME D E, VEN L T M V D, et al. Long-term exposure to environmental concentrations of the pharmaceutical ethynylestradiol causes reproductive failure in fish[J]. Environmental Health Perspectives, 2004, 112(17): 1725-1733. DOI:10.1289/ehp.7209 (0)
[12]
CHUN S, LEE J, RADOSEVICH M, et al. Influence of agricultural antibiotics and 17β-estradiol on the microbial community of soil[J]. Journal of Environmental Science and Health Part B, 2006, 41(6): 923-935. DOI:10.1080/03601230600806095 (0)
[13]
田琳, 张珣. 雌酮胁迫农田土壤微生物群落结构变化研究[J]. 生物技术通报, 2017, 33(6): 230-236.
TIAN Lin, ZHANG Xun. Study on the changes of soil microbial community structure in farmland by estrone stress[J]. Biotechnology Bulletin, 2017, 33(6): 230-236. (0)
[14]
ZHANG Hui, SHI Jianghong, LIU Xiaowei, et al. Occurrence and removal of free estrogens, conjugated estrogens, and bisphenol A in manure treatment facilities in East China[J]. Water Research, 2014, 58(7): 248-257. (0)
[15]
张梦涛, 郑溪, 曹飞, 等. 安徽省奶牛养殖场粪便中甾体雌激素污染特征研究[J]. 安徽农业科学, 2015, 43(16): 263-267.
ZHANG Mengtao, ZHENG Xi, CAO Fei, et al. Pollution characteristics of steroid estrogens in feces from concentrated dairy feeding farms of Anhui Province[J]. Journal of Anhui Agricultural Sciences, 2015, 43(16): 263-267. (0)
[16]
HUTCHINGS S R, WHITE M V, HUDSON F M, et al. Analysis of lagoon samples from different concentrated animal feeding operations for estrogens and estrogen conjugates[J]. Environmental Science & Technology, 2007, 41(3): 738-744. (0)
[17]
WU Fengchang, FANG Yixiang, LI Yushuang, et al. Predicted no-effect concentration and risk assessment for 17-[Beta]-estradiol in waters of China[J]. Reviews of Environmental Contamination and Toxicology, 2014, 228: 31-56. (0)
[18]
LEI Bingli, HUANG Shengbiao, ZHOU Yiqi, et al. Levels of six estrogens in water and sediment from three rivers in Tianjin area, China[J]. Chemosphere, 2009, 76: 36-42. DOI:10.1016/j.chemosphere.2009.02.035 (0)
[19]
WILLIAMS R J, JOHNSON A C, SMITH J J, et al. Steroid estrogens profiles along river stretches arising from sewage treatment works discharges[J]. Environmental Science & Technology, 2003, 37(9): 1744-1750. (0)
[20]
袁哲军, 张洪昌, 胡双庆, 等. 上海典型畜禽场周边河流雌激素污染特征研究[J]. 农业环境科学学报, 2017, 36(8): 1583-1589.
YUAN Zhejun, ZHANG Hongchang, HU Shuangqing, et al. Study on estrogen pollution characteristics of rivers around typical livestock and poultry farms in Shanghai[J]. Journal of Agro-Environment Science, 2017, 36(8): 1583-1589. (0)
[21]
GADD J B, TREMBLAY L A, NORTHCOTT G L. Steroid estrogens, conjugate estrogens and estrogenic activity in farm dairy shed effluents[J]. Environmental Pollution, 2010, 158(3): 730-736. DOI:10.1016/j.envpol.2009.10.015 (0)
[22]
RAMAN D R, WILLIAMS E L, LAYTON A C, et al. Estrogen content of dairy and swine wastes[J]. Environmental Science & Technology, 2004, 38(13): 3567-3573. (0)
[23]
ZHENG Wei, YATES S R, BRADFORD S A. Analysis of steroid hormones in a typical dairy waste disposal system[J]. Environmental Science & Technology, 2008, 42(2): 530-535. (0)
[24]
LIU Shan, YING Guangguo, ZHANG Ruiquan, et al. Fate and occurrence of steroids in swine and dairy cattle farms with different farming scales and wastes disposal systems[J]. Environmental Pollution, 2012, 170(8): 190-201. (0)
[25]
SARMAH A K, NORTHCOTT G L, LEUSCH F D L, et al. A survey of endocrine disrupting chemicals(EDCs) in municipal sewage and animal waste effluents in the Waikato Region of New Zealand[J]. Science of the Total Environment, 2006, 355(1/2/3): 135-144. (0)
[26]
CHEN Tesan, CHEN Tingchien, YEH K C, et al. High estrogen concentrations in receiving river discharge from a concentrated livestock feedlot[J]. Science of the Total Environment, 2010, 408(16): 3223-3230. DOI:10.1016/j.scitotenv.2010.03.054 (0)
[27]
JOHNSON A C, WILLIAMS R J, MATTHIESSEN P. The potential steroid hormone contribution of farm animals to freshwaters, the United Kingdom as a case study[J]. Science of the Total Environment, 2006, 362(1/2/3): 166-178. (0)
[28]
LEE B, KULLMAN S W, YOST E E, et al. An object-oriented Bayesian network approach for establishing swine manure-borne natural estrogenic compounds budget[J]. Science of the Total Environment, 2018, 639: 815-825. DOI:10.1016/j.scitotenv.2018.05.209 (0)
[29]
SHI Jianghong, CHEN Qingcai, LIU Xiaowei, et al. Sludge/water partition and biochemical transformation of estrone and 17β-estradiol in a pilot-scale step-feed anoxic/oxic wastewater treatment system[J]. Biochemical Engineering Journal, 2013, 74: 107-114. DOI:10.1016/j.bej.2013.03.001 (0)
[30]
ZHENG Wei, LI Xiaolin, YATES S R, et al. Anaerobic transformation kinetics and mechanism of steroid estrogenic hormones in dairy lagoon water[J]. Environmental Science & Technology, 2012, 46(10): 5471-5478. (0)
[31]
CZAJKA C P, LONDRY K L. Anaerobic biotransformation of estrogens[J]. Science of the Total Environment, 2006, 367(2): 932-941. (0)
[32]
林贞贤, 汝少国. 环境内分泌干扰物促进乳腺细胞增殖的分子机制研究进展[J]. 环境科学研究, 2018, 31(5): 796-804.
LIN Zhenxian, RU Shaoguo. Research advances on the molecular mechanism of environmental endocrine disrupting chemicals on promoting breast cell proliferation[J]. Research of Environmental Sciences, 2018, 31(5): 796-804. (0)
[33]
ZHANG Hui, SHI Jianghong, LIU Xiaowei, et al. Occurrence of free estrogens, conjugated estrogens, and bisphenol A in fresh livestock excreta and their removal by composting in North China[J]. Environmental Science and Pollution Research, 2014, 21(16): 9939-9947. DOI:10.1007/s11356-014-3002-9 (0)
[34]
SALVIA M V, EXPERTON J, GEANDEL C, et al. Fate of pharmaceutical compounds and steroid hormones in soil:study of transfer and degradation in soil columns[J]. Environmental Science and Pollution Research, 2014, 21(17): 10525-10535. DOI:10.1007/s11356-014-3038-x (0)