环境科学研究  2020, Vol. 33 Issue (3): 659-667  DOI: 10.13198/j.issn.1001-6929.2019.06.23

引用本文  

谷得明, 郭昌胜, 冯启言, 等. 精神活性物质在北京市某污水处理厂中的污染特征与生态风险[J]. 环境科学研究, 2020, 33(3): 659-667.
GU Deming, GUO Changsheng, FENG Qiyan, et al. Occurrence and Ecological Risk of Psychoactive Substances in a Wastewater Treatment Plant in Beijing[J]. Research of Environmental Sciences, 2020, 33(3): 659-667.

基金项目

国家自然科学基金项目(No.41673120,41703122)
Supported by National Natural Science Foundation of China (No.41673120, 41703122)

责任作者

徐建(1978-), 男, 安徽来安人, 研究员, 博士, 博导, 主要从事污染物环境化学及生态效应研究, xujian@craes.org.cn.

作者简介

谷得明(1989-), 男, 河南洛阳人, goodmingaust@163.com

文章历史

收稿日期:2019-02-17
修订日期:2019-05-13
精神活性物质在北京市某污水处理厂中的污染特征与生态风险
谷得明1,2, 郭昌胜1, 冯启言2, 张远1, 徐建1    
1. 中国环境科学研究院环境健康风险评估与研究中心, 国家环境保护化学品生态效应与风险评估重点实验室, 北京 100012;
2. 中国矿业大学环境与测绘学院, 江苏 徐州 221116
摘要:为了解污水处理厂对精神活性物质的去除特征及总出水对受纳水体的生态风险,采用固相萃取-高效液相色谱-串联质谱法调查了北京市某污水处理厂中13种精神活性物质的浓度水平与负荷量变化,并运用RQ(risk quotient,风险熵)对总出水中精神活性物质进行风险评估.结果表明:①13种精神活性物质在总进水与总出水中均能检出,总质量浓度平均值分别为2 395.10和63.59 ng/L,其中ρ(EPH)(EPH表示麻黄碱)占比分别为93.9%和67.9%,其次为COD(可待因)与METH(甲基苯丙胺).污水处理厂上游地表水中ρ(EPH)、ρ(METH)与ρ(KET)(KET为氯胺酮)均高于总出水及其下游地表水,说明上游沿河可能有新的污染源输入.②污水处理厂对NK(去甲氯胺酮)、BE(苯甲酰爱康宁)和MTD(美沙酮)均呈负去除,其他精神活性物质的去除主要发生在二级生物处理与三级处理(超滤膜与UV消毒)阶段.③污水处理厂服务区域内精神活性物质的周内负荷量存在一定波动,AMP(苯丙胺)、METH、MDA(3,4-亚甲二氧基苯丙胺)、MDMA(3,4-亚甲二氧基甲基苯丙胺)、KET与HER(海洛因)的负荷量均在周末升高.④污水处理厂总出水中精神活性物质的生态风险均较低(RQ < 0.10).研究显示,污水处理厂不能完全去除污水中的精神活性物质,总出水中残留精神活性物质对受纳河流生态系统产生的长期混合效应不容忽视.
关键词精神活性物质    污水处理厂    去除特征    负荷量    生态风险    
Occurrence and Ecological Risk of Psychoactive Substances in a Wastewater Treatment Plant in Beijing
GU Deming1,2, GUO Changsheng1, FENG Qiyan2, ZHANG Yuan1, XU Jian1    
1. State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Center for Environmental Health Risk Assessment and Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China;
2. School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
Abstract: This study investigated the removal characteristics of psychoactive substances in wastewater treatment plants (WWTPs) and the impact of effluent on aquatic organisms in the receiving water. The occurrence of thirteen psychoactive substances in a WWTP in Beijing, their removal characteristics and load estimation, together with their ecological risks in the effluent were studied. Water samples were extracted by solid-phase extraction and the target compounds were quantified by high performance liquid chromatography/tandem mass spectrometry. The results showed that thirteen psychoactive substances were detected in both influent and effluent, with the total mass concentrations of 2395.10 and 63.59 ng/L, respectively. EPH (ephedrine) accounted for 93.9% and 67.9% of the total mass in the influent and effluent respectively, followed by COD (codeine) and METH (methamphetamine). The total concentrations of EPH, METH and KET (ketamine) in upstream surface water were higher than those in effluent and downstream surface water, indicating the import of the target compounds from other pollution sources along the river. Negative removal of NK (norketamine), BE (benzoylecgonine) and MTD (methadone) was observed in WWTP and the removal of other psychoactive substances occurred mainly in the secondary biological treatment and tertiary treatment units (ultrafiltration membrane and UV disinfection). The weekly load of psychoactive substances in the service area of WWTP fluctuated to a certain extent, with the increase of AMP (amphetamine), METH, MDA (3, 4-methylenedioxyamphetamine), MDMA (3, 4-methylenedioxy-methamphetamine), KET and HER (herion) during the weekend. The ecological risks of psychoactive substances in the effluent of WWTP were low, with all RQ (risk quotient) values less than 0.10. However, the long-term mixing effects of residual psychoactive substances on the ecosystem of the receiving river should not be ignored.
Keywords: psychoactive substances    wastewater treatment plant    removal characteristics    load    ecological risk    

精神活性物质是一类作用于人类中枢神经系统并具较强成瘾性的化合物,常见种类包括可卡因、大麻、海洛因、致幻剂、安非他明类兴奋剂和其他阿片类药物等[1].人体吸食后不能被完全代谢,以母体及其代谢产物的形式随尿液排出体外,最终进入污水处理厂.传统污水处理厂不能完全去除精神活性物质,致使其持续进入水环境[2]. Andrés-Costa等[3]研究西班牙三家污水处理厂对8种精神活性物质及其代谢物的去除,发现单乙酰吗啡以外的所有精神活性物质均在进水中检出,COC (可卡因)、AMP (苯丙胺)、METH (甲基苯丙胺)、THC-COOH (四氢大麻酚)能够被完全去除,BE (苯甲酰爱康宁)与MDMA (3, 4-亚甲二氧基甲基苯丙胺)的去除率分别为93%~98%和32%~57%,而对KET (氯胺酮)没有去除.尽管精神活性物质在水体中的检出浓度较低(ng/L~μg/L),但其对生态系统的长期潜在威胁仍不容小觑. Imeh-Nathaniel等[4]研究发现,低剂量COC、METH和MOR (吗啡)增加了小龙虾的移动性,高剂量增加了其静止性,低剂量暴露可能引起长期的行为和神经化学敏感.

精神活性物质的使用量通常由人口调查、消费者访问、药品记录、犯罪统计和缴获数据等方式获取,然而这些间接手段客观性较低、周期长且费用高[1]. Daughton等[5]于2001年提出WBE (wastewater based epidemiology,污水流行病学)的概念,Zuccato等[6]首次应用该方法评估了居民区内COC的使用情况.基于WBE的调查方法是通过采集污水处理厂进水样品,检测其中目标物及其代谢物残留浓度,然后结合污水流量、服务社区人数和校正因子等反推计算出社区内目标物负荷与消耗,校正因子需考虑目标物的排泄率及其在污水中的稳定性.因为样品采集与分析可以在短时间内完成,所以该方法可以快速真实地产生结果,及时提供精神活性物质的消费量. Thomas等[7]运用WBE方法对比了19个欧洲城市的毒品使用情况,结果表明西欧、中欧的COC用量高于北欧和东欧,荷兰、比利时的人均致幻剂用量较高,二者在周末的用量明显高于工作日,赫尔辛基、图尔库、奥斯陆和布加勒斯特的人均METH用量最高,而人均大麻用量在整个欧洲差异较小. Kim等[8]在韩国的5个城市首次应用WBE评估了圣诞节和元旦期间精神活性物质的使用情况,发现90%的样品中检测到了几个ng/L甚至更低浓度的AMP、METH和COD (可待因),其中METH的使用最为广泛,负荷量为22 mg/(1 000人·d),远低于中国香港〔180~200 mg/(1 000人·d)〕[9].

目前,我国关于精神活性物质的研究主要集中在前处理与检测方法的开发[10-11]、水平调查[12-13]及WBE在部分大型城市的应用[14-16]等,在污水厂各处理单元对精神活性物质去除方面的研究相对较少.笔者所在课题组[17]建立了同时测定水环境中精神活性物质的固相萃取-液相色谱-质谱联用方法,并调查发现北京市河流地表水体中EPH (麻黄碱)检出率最高,平均质量浓度为22.79 ng/L,METH平均质量浓度为14.63 ng/L. WANG等[18]调查了渤海和北黄海的36条入海河流中的精神活性物质及其代谢物,检出率最高的分别是METH(92%)和KET(69%). DU等[19]通过WBE分析了我国18个主要城市的36家污水处理厂进、出水样品,发现METH的平均负荷量为(12.5±14.9)~(181.2±6.5) mg/(1 000人·d),KET平均负荷量为>0.2~(89.6±27.4) mg/(1 000人·d),METH负荷量没有显著空间差异,而KET负荷量整体由北向南明显升高.

该研究选择北京市某污水处理厂为研究对象,调查精神活性物质在污水处理厂各处理单元的浓度水平与去除率,并运用WBE评估该污水处理厂服务区域内精神活性物质的用量及其周内变化情况,评估各个精神活性物质的生态风险,以期为精神活性物质的监测与环境风险评估提供基础数据.

1 材料与方法 1.1 试剂与仪器

EPH、AMP、METH、MC (甲卡西酮)、MDA (3, 4-亚甲二氧基苯丙胺)、MDMA、NK (去甲氯胺酮)、KET、BE、COC、MTD (美沙酮)、HER (海洛因)、COD (见表 1)与METH-d8(甲基苯丙胺-氘8)购自美国Cerilliant公司;氨水(25%~28%)与浓盐酸(均为分析纯)购自北京国药集团化学试剂有限公司;甲醇、乙腈(均为色谱纯)购自英国Fisher公司;FA (甲酸)购自美国Sigma-Aldrich公司;试验用超纯水由Mili-Q系统(美国Millipore公司)制备;固相萃取柱Oasis MCX (60 mg)与玻璃纤维滤膜(直径47 mm,孔径0.45 μm)均购自美国Waters公司.

表 1 精神活性物质的理化性质[20-21] Table 1 Physico-chemical properties of psychoactive substances[20-21]
1.2 样品采集

样品采自北京市某污水处理厂,该厂服务人口约357×104人,处理规模为95×104 m3/d.于2018年12月采集污水厂各处理单元进水与出水(见图 1),受纳河流采样点分别设置在总出水口上游500 m与下游300 m,每天取样1次,每个采样点取水样1 L,共计6 d.置于棕色玻璃瓶中,冷藏运回实验室并在24 h内处理完毕.

图 1 污水处理厂流程及采样点位置 Fig.1 Schematic diagram of the WWTP and the sampling site locations
1.3 样品分析 1.3.1 样品前处理

分别量取200 mL各处理单元水样和500 mL地表水样品,经0.45 μm玻璃纤维滤膜过滤,用盐酸调节pH至3,加入5 ng的METH-d8.依次用5 mL甲醇和6 mL超纯水对MCX柱活化平衡;以1 mL/min的流速上样富集;样品加载完后,用6 mL超纯水淋洗MCX柱;抽干,用6 mL含5%氨水的甲醇进行洗脱;收集洗脱液至10 mL具塞离心管中,40 ℃水浴中弱氮气流吹干;用1 mL体积比为9 :1的水与乙腈溶液重构样品,经0.22 μm尼龙膜过滤,待测.

1.3.2 样品测定

液相色谱柱为ACQUITY UPLC® BEH C18(1.7 μm,50 mm×2.1 mm,美国Waters公司),进样量为5 μL,流动相由0.1% FA水溶液(A)和乙腈(B)组成.洗脱梯度:0~0.5 min,2% B;0.5~4.5 min,50% B;4.5~4.6 min,98% B;4.6~6.0 min,98% B;6.0~6.2 min,2% B;6.2~7.5 min,2% B.流动相流速为0.45 mL/min,柱温40 ℃.目标物定量使用Xevo T-QS三重四级杆串联质谱仪(美国Waters公司),采用多反应监测(multiple reaction monitoring, MRM)与电喷雾正离子源(ESI+)模式.氮气作为脱溶剂和雾化气体,毛细管电压为0.5 kV,离子源和脱溶温度分别为150和400 ℃.目标物离子对及相应质谱参数见表 2.

表 2 目标物离子对及相应质谱参数 Table 2 Analyte ions and MS parameters
1.3.3 方法验证与质量控制

采用内标法定量,线性范围为0.05~10 μg/L,相关系数均大于0.99.分别以超纯水、地表水和目标物浓度较低的污水作为基质进行加标回收率试验,加标水平为20 ng/L(n =5),对应回收率分别为78.5%~114.4%、73.8%~103.6%和69.3%~96.8%,相对标准偏差均低于10%,重现性良好. LOD (检测限)与LOQ (定量限)分别取信噪比为3和10,目标物在污水与地表水中的LOQ分别为0.45~2.62、0.24~0.86 ng/L.

1.4 去除率计算与负荷量估算

用式(1)计算污水处理厂各处理单元对目标物的去除率:

$ R_{i}=\left(C_{\ln i}-C_{\mathrm{Eff}}\right) / C_{\mathrm{Inf}} \times 100 \% $ (1)

式中:Ri为目标物去除率,%;CInfCEff分别为目标物在各处理单元进水与出水中的质量浓度平均值,ng/L.

用式(2)计算污水处理厂服务区域内精神活性物质的千人日均负荷量[22]

$ L=10^{-3} C_{\mathrm{Inf}} \times Q_{\mathrm{ln}} / P $ (2)

式中:L为目标物千人日均负荷量,mg/(1 000人·d);QInf为污水处理厂总进水流量,L/d;P为服务区域人口数量,人.

1.5 生态风险评估

采用RQ (risk quotient, 风险熵)来评价精神活性物质的可能风险,Hernando等[23]提出RQ≥1.00为高风险,0.10≤RQ < 1.00为中等风险或潜在风险,RQ < 0.10为低风险或风险可忽略.

$ {{\rm{RQ}} = {\rm{MEC}}/{\rm{PNEC}}} $ (3)
$ {{\rm{PNEC}} = {\rm{E}}{{\rm{C}}_{50}}/{\rm{AF}}} $ (4)

式中:MEC为物质在环境中的质量浓度,mg/L;PNEC为物质的预测无效应浓度,mg/L;EC50为生物对物质的半数效应浓度,通过文献或美国环境保护局提供的ECOSAR软件计算求得,mg/L;AF为评价因子,采用欧盟水框架指令的推荐值(1 000).

2 结果与讨论 2.1 污水处理厂中精神活性物质的浓度与组成

总进水中13种精神活性物质均有检出(见表 3),总质量浓度平均值为2 395.10 ng/L,其中ρ (EPH)为2 248.61 ng/L,占比为93.9%(见表 4). EPH是制造METH的原料,也是感冒药中的常见成分,具有镇咳、抗过敏和扩张支气管等作用[24],高浓度的EPH主要可能来自服务区域内处方药的大量使用. ρ(COD)与ρ(METH)平均值分别为60.27和51.33 ng/L,分别占总浓度的2.52%和2.1%. ρ(AMP)、ρ(MC)、ρ(MDA)与ρ(MDMA)平均值分别为4.83、6.59、13.34和1.34 ng/L,KET及其代谢物NK的质量浓度平均值分别为2.32和0.02 ng/L.由于KET进入人体后不能完全代谢,仅有部分被转化为NK[25],导致NK浓度较低. MTD、COC及其代谢物BE质量浓度平均值分别为0.07、2.30和3.16 ng/L. ρ(HER)平均值为0.93 ng/L,可能是因为其稳定性较差,导致了HER在水体中的降解.

表 3 污水处理厂各处理单元液相中精神活性物质的质量浓度 Table 3 The concentrations of psychoactive substances in liquid phase of each treatment unit in WWTP 

表 4 污水处理厂各处理单元液相中精神活性物质的组成比例 Table 4 The composition proportion of psychoactive substances in liquid phase of each treatment unit in WWTP 

曝气沉砂池与初沉池出水中精神活性物质的总质量浓度平均值分别为2 357.98和2 043.59 ng/L,其中EPH降低了299.36 ng/L,占总浓度降低值的95.2%,其他物质浓度变化较小,而两个处理单元中的生物量均较低,说明该部分EPH去除是通过吸附至颗粒物表面沉降所致.缺氧池出水中总质量浓度平均值为424.9 ng/L,好氧池与二沉池出水中总质量浓度平均值分别为102.64和108.02 ng/L.除AMP与METH外,二沉池出水中其他物质均较好氧池出水中的浓度有不同程度的升高,推测可能是吸附在活性污泥中的目标物释放到水体所致.总出水及其上游、下游地表水中精神活性物质的总质量浓度分别为63.59、90.69和83.87 ng/L,上游地表水浓度较高,表明上游沿河可能存在其他新污染源.

2.2 目标物去除率

曝气沉砂池对精神活性物质的去除率为-617.4%(NK)~1.9%(EPH),对COD的去除率为1.8%(见表 5),其余物质均呈负去除.有研究[26]表明,污水中以螯合形式存在的物质在曝气过程中能重新释放到水体,造成其含量升高.初沉池对精神活性物质的去除率为-67.9%(MTD)~17.6%(NK),缺氧池能够完全去除AMP,对EPH、METH、MC、MDMA、COC、HER和COD的去除率分别为81.2%、70.9%、59.5%、53.8%、10.9%、9.1%和64.1%.此外,需要注意的是,MTD在曝气沉砂池出水中的浓度为0.25 ng/L,而在厌氧池出水中浓度3.85 ng/L,导致其呈现显著负去除,这可能是污水厂处理过程中强化了其母体或前提化合物的转化,与Bikram等[27]相关研究结果一致.好氧池对精神活性物质的去除率范围分别为-130%(AMP)~86.9%(EPH).二沉池对各精神活性物质的去除率范围分别为-67.7%(HER)~8.1%(AMP),仅能去除少量的METH(5.2%)与KET(2.2%).同时,对比分析了精神活性物质在二沉池出水与总出水中的浓度,发现所有物质的去除率介于10.1%(NK)~90.1%(COD)之间,说明三级处理中的超滤膜与UV消毒能够不同程度的去除精神活性物质.

表 5 污水处理厂各处理单元对精神活性物质的去除率 Table 5 Removal rate of psychoactive substances in each treatment unit of WWTP 

整体上,污水处理厂能够不同程度地去除10种精神活性物质,且主要集中在二级生物处理与三级处理. Postigo等[28]研究了埃布罗河盆地7家污水处理厂对精神活性物质的去除,发现经过初沉池和活性污泥或生物滤池后,45%~95%的化合物能够被去除,COC与AMP的去除率高于90%,而致幻剂、METH与THC-COOH等毫无去除,与该研究结果存在一定差异,可能受污水处理厂区域气候、进水流量、处理工艺、运行参数等因素影响. Jekel等[29]指出,任何微生物介导的药物去除均可能受到工艺设计、操作参数、水温、溶解氧浓度等环境因素的强烈影响.此外,在以污水处理厂进水和出水浓度为基础计算去除效果时,应考虑HRT (水力停留时间),污水处理厂HRT越长,生物降解时间越长,去除效果可能越好[30].

该研究污水处理厂对NK、BE和MTD均存在负去除现象(见表 5).相关研究普遍认为出现负去除的可能原因是:①这些物质在代谢中与葡糖醛酸共轭结合,通过污水处理厂的工艺流程(如生物处理)时,可能被裂解为目标物质,使得出水浓度高于进水,导致负去除[31]. ②由混合体系特征、流速流量及目标物质浓度的变异性所导致[32].该研究NK的负去除主要发生在曝气沉砂池(-617.4%)与缺氧池(-136.4%),总进水与总出水中的浓度相对较低,分别为0.017和0.198 ng/L.缺氧池与厌氧池的生物处理对BE均呈现负去除,分别为-134.7%和-0.6%,进一步证实了BE的负去除主要是来自COC的生物转化. MTD用于阿片类药物依赖者的治疗[33],其负去除现象主要发生在缺氧池. Bikram等[27]调查了美国两个污水处理厂中精神活性物质的去除,发现二级处理后MTD呈负去除(< -110%),可能是污水厂处理过程强化了母体或前体化合物的转化.

2.3 负荷量评估

表 6给出目标精神活性物质一周内的负荷量变化.在污水处理厂进水样品中,EPH负荷量最高,服务区域内高负荷量的EPH可能主要来自临床医用. MDA与MDMA的周内负荷量分别为2.6~4.2和0.3~ 0.5 mg/(1 000人·d),AMP与METH的周内负荷量分别为1.0~1.6和11.2~15.5 mg/(1 000人·d),KET周内负荷量为0.5~0.8 mg/(1 000人·d).有研究[34]表明,北京市AMP与METH的使用量呈显著正相关,且夏季负荷量高于冬季,推测可能是因为夏季去娱乐场所的人更多且时间更长.在我国36家污水处理厂对应的服务区内,METH与KET的负荷量分别为67.8和0.2~89.6 mg/(1 000人·d),KET负荷量空间变化高于METH,华北地区KET负荷量高于华南地区[19]. BE与COC的周内负荷量分别为0.5~1.6和0.3~1.1 mg/(1 000人·d),MC周内负荷量为1.1~2.0 mg/(1 000人·d),MTD仅在周六检出,负荷量为0.1 mg/(1 000人·d),HER周内最大负荷量为0.4 mg/(1 000人·d). COD的周内负荷量为12.6~18.2 mg/(1 000人·d),高于韩国的COD平均负荷量〔5.7 mg/(1 000人·d)〕[8],远低于英国对应负荷量〔565 mg/(1 000人·d)〕[35].

表 6 精神活性物质负荷量周内变化 Table 6 Weekly changes in loads of psychoactive substances
2.4 风险评估

结合表 7中半数效应浓度最小毒性数据分析,该研究污水处理厂总出水中10种精神活性物质的风险均较低,RQ均小于0.10,表明其对受纳河流的水生生物不会产生较大威胁.但精神活性物质通常是多种共存的,单一物质的风险效应并不能说明实际情况,其对水生态系统的长期潜在风险仍不容小觑.

表 7 精神活性物质的PNECs值、环境中检测出的最大浓度值及RQ Table 7 PNECs, measured maximal concentrations and RQ for psychoactive substances
3 结论

a) 13种精神活性物质在污水处理厂进水和出水中均有检出. EPH占比最大,其次为COD与METH.污水处理厂上游地表水中EPH、METH和KET总浓度均高于对应总出水及其下游地表水,说明上游沿河可能有新污染源输入.

b) 污水处理厂不能完全去除精神活性物质,对NK、BE和MTD存在负去除现象,AMP、EPH、COD、METH的去除率均高于90%,KET的去除率最低,仅为18.9%.

c) 13种精神活性物质的负荷量周内存在一定波动,EPH的负荷量最高〔690.31 mg/(1 000人·d)〕,AMP、METH、MDA、MDMA、KET与HER的负荷量均在周末升高.

d) 污水处理厂出水中精神活性物质的生态风险较小(RQ < 0.10),但其对受纳水体生态系统的长期潜在风险仍不容忽视.

参考文献
[1]
YADAV M K, SHORT M D, ARYAL R, et al. Occurrence of illicit drugs in water and wastewater, and their removal during wastewater treatment[J]. Water Research, 2017, 124: 713-727. DOI:10.1016/j.watres.2017.07.068 (0)
[2]
DEVAULT D A, NÉFAU T, LEVI Y, et al. The removal of illicit drugs and morphine in two waste water treatment plants (WWTPs) under tropical conditions[J]. Environmental Science and Pollution Research, 2015, 24(33): 25645-25655. (0)
[3]
ANDRÉS-COSTA M J, RUBIO-LÓPEZ N, MORALES SUÁREZ-VARELA M, et al. Occurrence and removal of drugs of abuse in wastewater treatment plants of valencia (Spain)[J]. Environmental Pollution, 2014, 194: 152-162. DOI:10.1016/j.envpol.2014.07.019 (0)
[4]
IMEH-NATHANIEL A, RINCON N, ORFANAKOS V B, et al. Effects of chronic cocaine, morphine and methamphetamine on the mobility, immobility and stereotyped behaviors in crayfish[J]. Behavioural Brain Research, 2017, 332: 120-125. DOI:10.1016/j.bbr.2017.05.069 (0)
[5]
DAUGHTON C G. Emerging pollutants, and communicating the science of environmental chemistry and mass spectrometry:pharmaceuticals in the environment[J]. Journal of the American Society for Mass Spectrometry, 2001, 12(10): 1067-1076. DOI:10.1016/S1044-0305(01)00287-2 (0)
[6]
ZUCCATO E, CHIABRANDO C, CASTIGLIONI S, et al. Estimating community drug abuse by wastewater analysis[J]. Environmental Health Perspectives, 2008, 116(8): 1027-1032. DOI:10.1289/ehp.11022 (0)
[7]
THOMAS K V, BIJLSMA L, CASTIGLIONI S, et al. Comparing illicit drug use in 19 European cities through sewage analysis[J]. Science of the Total Environment, 2012, 432: 432-439. DOI:10.1016/j.scitotenv.2012.06.069 (0)
[8]
KIM K Y, LAI F Y, KIM H, et al. The first application of wastewater-based drug epidemiology in five South Korean cities[J]. Science of the Total Environment, 2015, 524/525: 440-446. DOI:10.1016/j.scitotenv.2015.04.065 (0)
[9]
LAI F Y, BRUNO R, LEUNG H W, et al. Estimating daily and diurnal variations of illicit drug use in Hong Kong:a pilot study of using wastewater analysis in an Asian metropolitan city[J]. Forensic Science International, 2013, 233(1/2/3): 126-132. (0)
[10]
ZHANG Y, ZHANG T, GUO C, et al. Drugs of abuse and their metabolites in the urban rivers of Beijing, China:occurrence, distribution, and potential environmental risk[J]. Science of the Total Environment, 2016, 579: 305-313. (0)
[11]
GUO C, ZHANG T, HOU S, et al. Investigation and application of a new passive sampling technique for in-situ monitoring of illicit drugs in waste waters and rivers[J]. Environmental Science & Technology, 2017, 51(16): 9101-9108. (0)
[12]
LI K, DU P, XU Z, et al. Occurrence of illicit drugs in surface waters in China[J]. Environmental Pollution, 2016, 213: 395-402. DOI:10.1016/j.envpol.2016.02.036 (0)
[13]
GAO T, DU P, XU Z, et al. Occurrence of new psychoactive substances in wastewater of major Chinese cities[J]. Science of the Total Environment, 2017, 575: 963-969. DOI:10.1016/j.scitotenv.2016.09.152 (0)
[14]
DU P, ZHOU Z, BAI Y, et al. Estimating heroin abuse in major Chinese cities through wastewater-based epidemiology[J]. Science of the Total Environment, 2017, 158-165. (0)
[15]
李彦学.污水流行病学方法调查大连市氯胺酮滥用研究[D].大连: 大连海事大学, 2017. (0)
[16]
刘春叶, 王喆, 冯佳铭, 等. 污水流行病学调查辽宁和吉林两省甲基苯丙胺滥用量和流行率[J]. 环境化学, 2018, 37(8): 1763-1769.
LIU Chunye, WANG Zhe, FENG Jiaming, et al. Methamphetamine consumption and prevalence in Liaoning and Jilin Provinces investigated by sewage epidemiology[J]. Environmental Chemistry, 2018, 37(8): 1763-1769. (0)
[17]
张艳, 张婷婷, 郭昌胜, 等. 北京市城市河流中精神活性物质的污染水平及环境风险[J]. 环境科学研究, 2016, 29(6): 845-853.
ZHANG Yan, ZHANG Tingting, GUO Changsheng, et al. Pollution status and environmental risks of illicit drugs in the urban rivers of Beijing[J]. Research of Environmental Sciences, 2016, 29(6): 845-853. (0)
[18]
WANG D, ZHENG Q, WANG X, et al. Illicit drugs and their metabolites in 36 rivers that drain into the Bohai Sea and North Yellow Sea, North China[J]. Environmental Science and Pollution Research, 2016, 23(16): 16495-16503. DOI:10.1007/s11356-016-6824-9 (0)
[19]
DU P, LI K, LI J, et al. Methamphetamine and ketamine use in major Chinese cities, a nationwide reconnaissance through sewage-based epidemiology[J]. Water Research, 2015, 84: 76-84. DOI:10.1016/j.watres.2015.07.025 (0)
[20]
张艳, 张婷婷, 陈卫平, 等. 北京市水环境中精神活性物质污染特征[J]. 环境科学, 2017, 38(7): 2819-2827.
ZHANG Yan, ZHANG Tingting, CHEN Weiping, et al. Distribution characteristics of drugs of abuse and their metabolites in aqueous environment of Beijing, China[J]. Environmental Science, 2017, 38(7): 2819-2827. (0)
[21]
胡鹏, 张艳, 郭昌胜, 等. 水环境中滥用药物的环境学研究进展[J]. 环境化学, 2017, 36(8): 1711-1723.
HU Peng, ZHANG Yan, GUO Changsheng, et al. Environmental studies on drugs of abuse in the aquatic environment[J]. Environmental Chemistry, 2017, 36(8): 1711-1723. (0)
[22]
FOPPE K S, HAMMOND-WEINBERGER D R, SUBEDI B. Estimation of the consumption of illicit drugs during special events in two communities in western Kentucky, USA using sewage epidemiology[J]. Science of the Total Environment, 2018, 633: 249-256. DOI:10.1016/j.scitotenv.2018.03.175 (0)
[23]
HERNANDO M D, MEZCUA M, FERNÁNDEZ-ALBA A R, et al. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments[J]. Talanta, 2006, 69(2): 334-342. DOI:10.1016/j.talanta.2005.09.037 (0)
[24]
张琳, 张福成, 王朝虹, 等. 固相萃取-超高效液相色谱-电喷雾串联质谱法同时检测尿样中的麻黄碱和N-甲基麻黄碱[J]. 色谱, 2013, 31(9): 898-902.
ZHANG Lin, ZHANG Fucheng, WANG Zhanhong, et al. Simultaneous determination of ephedrine and N-methylephedrine in urine by solid phase extraction-ultra performance liquid chromatography-electrospray ionization tandem mass spectrometry[J]. Chinese Journal of Chromatography, 2013, 31(9): 898-902. (0)
[25]
LIN Y C, LEE W N, WANG X H. Ketamine and the metabolite norketamine:persistence and phototransformation toxicity in hospital wastewater and surface water[J]. Water Research, 2014, 53(8): 351-360. (0)
[26]
高俊红, 王兆炜, 张涵瑜, 等. 兰州市污水处理厂中典型抗生素的污染特征研究[J]. 环境科学学报, 2016, 36(10): 3765-3773.
GAO Junhong, WANG Zhaowei, ZHANG Hanyu, et al. Occurrence and the fate of typical antibiotics in sewage treatment plants in Lanzhou[J]. Acta Scientiae Circumstantiae, 2016, 36(10): 3765-3773. (0)
[27]
BIKRAM S, KURUNTHACHALAM K. Mass loading and removal of select illicit drugs in two wastewater treatment plants in New York State and estimation of illicit drug usage in communities through wastewater analysis[J]. Environmental Science & Technology, 2014, 48(12): 6661-6670. (0)
[28]
POSTIGO C, MJ L D A, BARCELÓ D. Drugs of abuse and their metabolites in the Ebro River Basin:occurrence in sewage and surface water, sewage treatment plants removal efficiency, and collective drug usage estimation[J]. Environment International, 2010, 36(1): 75-84. DOI:10.1016/j.envint.2009.10.004 (0)
[29]
JEKEL M, DOTT W, BERGMANN A, et al. Selection of organic process and source indicator substances for the anthropogenically influenced water cycle[J]. Chemosphere, 2015, 125: 155-167. DOI:10.1016/j.chemosphere.2014.12.025 (0)
[30]
FERNANDEZFONTAINA E, OMIL F, LEMA J M, et al. Influence of nitrifying conditions on the biodegradation and sorption of emerging micropollutants[J]. Water Research, 2012, 46(16): 5434-5444. DOI:10.1016/j.watres.2012.07.037 (0)
[31]
MARIA H F, MARIA TERESA G, FRANCESC V. Ultraperformance liquid chromatography-tandem mass spectrometry analysis of stimulatory drugs of abuse in wastewater and surface waters[J]. Analytical Chemistry, 2007, 79(10): 3821-3829. DOI:10.1021/ac062370x (0)
[32]
BAKER D R, KASPRZYK-HORDERN B. Spatial and temporal occurrence of pharmaceuticals and illicit drugs in the aqueous environment and during wastewater treatment:new developments[J]. Science of the Total Environment, 2013, 454/455: 442-456. DOI:10.1016/j.scitotenv.2013.03.043 (0)
[33]
VOLPE D A, XU Y, SAHAJWALLA C G, et al. Methadone metabolism and drug-drug interactions:in vitro and in vivo literature review[J]. Journal of Pharmaceutical Sciences, 2018, 107(12): 2983-2991. DOI:10.1016/j.xphs.2018.08.025 (0)
[34]
LI J, HOU L, DU P, et al. Estimation of amphetamine and methamphetamine uses in Beijing through sewage-based analysis[J]. Science of the Total Environment, 2014, 490: 724-732. DOI:10.1016/j.scitotenv.2014.05.042 (0)
[35]
BAKER D R, BARRON L, KASPRZYK-HORDERN B. Illicit and pharmaceutical drug consumption estimated via wastewater analysis.Part A:chemical analysis and drug use estimates[J]. Science of the Total Environment, 2014, 487: 629-641. DOI:10.1016/j.scitotenv.2013.11.107 (0)
[36]
SANDERSON H, JOHNSON D J, REITSMA T, et al. Ranking and prioritization of environmental risks of pharmaceuticals in surface waters[J]. Regulatory Toxicology and Pharmacology, 2004, 39(2): 158-183. DOI:10.1016/j.yrtph.2003.12.006 (0)
[37]
LILIUS H, ISOMAA B, HOLMSTRÖM T. A comparison of the toxicity of 50 reference chemicals to freshly isolated rainbow trout hepatocytes and daphnia magna[J]. Aquatic Toxicology, 1994, 30(1): 47-60. (0)