环境科学研究  2020, Vol. 33 Issue (3): 761-768  DOI: 10.13198/j.issn.1001-6929.2019.04.19

引用本文  

张云慧, 杜平, 秦晓鹏, 等. 不同浓度锌处理下水稻幼苗对镉的累积效应[J]. 环境科学研究, 2020, 33(3): 761-768.
ZHANG Yunhui, DU Ping, QIN Xiaopeng, et al. Accumulation of Cadmium in Rice Seedlings After Treatment with Different Concentrations of Zinc[J]. Research of Environmental Sciences, 2020, 33(3): 761-768.

基金项目

国家自然科学基金项目(No.41501350);广西科学研究与技术开发计划-重大专项计划(No.桂科重1598014-4)
National Natural Science Foundation of China (No.41501350); Scientific Research and Technology Development Program of Guangxi Zhuang Autonomous Region, China-Major Project Plan (No.GSM 1598014-4)

责任作者

杜平(1982-), 女, 山东聊城人, 副研究员, 博士, 主要从事土壤及尾矿污染修复研究, duping@craes.org.cn.

作者简介

张云慧(1993-), 男, 河南开封人, zyh462007@outlook.com

文章历史

收稿日期:2019-01-23
修订日期:2019-04-08
不同浓度锌处理下水稻幼苗对镉的累积效应
张云慧1,2, 杜平2, 秦晓鹏2, 何赢1,2, 徐刚1, 吴明红1    
1. 上海大学环境与化学工程学院, 上海 200444;
2. 中国环境科学研究院, 北京 100012
摘要:为探究锌(Zn)对水稻镉(Cd)累积的影响及其根表铁膜所发挥的作用,选取Cd高累积型水稻品种中9优547(简称"Z547")和Cd低累积型水稻品种金优402(简称"J402"),采用温室水培试验,研究0、2、5、10、15和20 μmol/L等6个Zn浓度下水稻幼苗对Cd的累积效应,以及不同浓度Zn处理对根表铁膜生成量的影响.结果表明:①随着c(Zn)的增加,Z547和J402水稻幼苗生物量均呈先增后减的趋势,分别在c(Zn)为2和10 μmol/L时达到最大值.②Z547和J402水稻幼苗中w(Cd)均呈先降后增的趋势,分别在c(Zn)为5和2 μmol/L时达到最小值;当水稻幼苗中w(Cd)达到最小值时,Z547根和地上部中w(Cd)分别为31.65和11.47 mg/kg,J402根和地上部中w(Cd)分别为22.58和14.36 mg/kg.③不同浓度Zn处理下水稻幼苗各部位中w(Cd)均与根表铁膜中w(Mn)、w(Fe)、w(Fe+Mn)呈显著正相关,高铁膜处理水稻幼苗中w(Cd)显著高于低铁膜处理,表明根表铁膜生成量的增加会促进Cd在水稻幼苗中的累积.研究显示,当c(Zn)较低时,c(Zn)的增加会抑制水稻幼苗对Cd的累积;当c(Zn)较高时,c(Zn)的增加会促进水稻幼苗对Cd的累积,而Zn可通过控制根表铁膜的生成来影响水稻幼苗对Cd的累积.
关键词        水稻    根表铁膜    累积    
Accumulation of Cadmium in Rice Seedlings After Treatment with Different Concentrations of Zinc
ZHANG Yunhui1,2, DU Ping2, QIN Xiaopeng2, HE Ying1,2, XU Gang1, WU Minghong1    
1. School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China;
2. Chinese Research Academy of Environmental Sciences, Beijing 100012, China
Abstract: High Cd accumulation cultivar 'Zhong 9 you 547 (Z547)' and low Cd accumulation cultivar 'Jinyou 402 (J402)' were chosen as the model plants and hydroponics culture experiments were carried out in greenhouse to study the effects of different concentrations of Zn on the accumulation of Cd in rice seedlings and the concentrations of iron plaque. The results showed that in the range of 0-20 μmol/L Zn, the biomass of rice seedlings reached the maximum values when the concentrations of Zn were 2 (Z547) and 10 μmol/L (J402), respectively, and then decreased with the increasing concentrations of Zn. As Zn concentration increased, the concentrations of Cd in rice seedlings first decreased and then increased. The minimum concentrations of Cd in root and shoot of Z547 were 31.65 and 11.47 mg/kg, respectively, at 5 μmol/L Zn. The minimum concentrations of Cd in root and shoot of J402 were 22.58 and 14.36 mg/kg, respectively, at 2 μmol/L Zn. As a result, the presence of different concentrations of Zn could significantly affect the accumulation of Cd in rice seedlings. The concentrations of Cd in rice seedlings treated with high iron plaque were much higher than that treated with low iron plaque, which indicated that higher concentrations of iron plaque on root surface would promote the accumulation of Cd in rice seedlings. At different concentrations of Zn, the concentrations of manganese (Mn), iron (Fe) and Mn+Fe in iron plaque were positively correlated with the concentrations of Cd in rice seedlings. The results indicated that Zn could affect the accumulation of Cd in rice seedlings by changing the formation of iron plaque.
Keywords: cadmium    zinc    rice    iron plaque    accumulation    

Cd是一种有毒元素,会通过食物摄入进入人体,可能引起骨质疏松、慢性肾病等多种病症.水稻作为世界主要粮食作物之一,源于稻米的饮食Cd摄入会对人体健康造成威胁[1].研究表明,土壤中多种营养元素的含量均会影响水稻对Cd的吸收和累积.缺Fe条件下水稻中w(Cd)较高[2],而当Fe供应充足时,水稻中w(Cd)较低[3].与Fe类似,随着S、Se等元素含量的增加,水稻中w(Cd)逐渐降低[4-5].

Zn和Cd属于同一族元素,具有相同的核外电子结构和相似的化学性质,在水稻细胞中共用转运通道[6],Zn的存在及含量对水稻中Cd累积的影响与其他元素有所不同.添加Zn后,普通、野生型和Cd敏感型水稻幼苗根中w(Cd)均有不同程度的降低[7-8].但是,一些学者也有不同的报道:如在添加较高浓度(3.2~31.2 μmol/L)的Zn后,随着c(Zn)的增加,水稻幼苗地上部w(Cd)逐渐升高[9];WANG等[10]发现,水稻中w(Cd)与土壤中w(Zn)呈显著正相关(R=0.276,P < 0.05,n=64),表明Zn的存在会促进农作物对Cd的吸收.另外,不同品种水稻对Cd的累积也存在较大差异,相同试验条件下不同品种水稻籽粒中w(Cd)最大相差4.8倍[11].因此,目前国内外关于Zn(尤其是在不同Zn含量的条件下)对水稻吸收Cd的影响尚无明确结论.研究Zn对水稻吸收Cd的影响机制及主控因素,可用于指导Zn肥的施用以控制Cd在水稻中的累积风险,对于保证稻米质量安全具有重要意义.

该研究选择两种常见的水稻品种(分别为低累积和高累积品种)作为研究对象,采用温室水培试验,研究不同浓度Zn处理下水稻幼苗对Cd的累积效应,阐明Zn和Cd共同作用下根表铁膜对该过程的影响,以期为施Zn控制水稻Cd积累和锌镉复合污染土壤的管理提供参考.

1 材料与方法 1.1 供试材料

供试品种为中9优547(简称“Z547”)和金优402(简称“J402”),分别为Cd的高累积和低累积品种,购自湖北省大冶市.水培试验所用培养液参照文献[12]配制,主要成分包括:0.5 μmol/L Na2MoO4·2H2O,10 μmol/L H3BO3,5 μmol/L MnSO4·H2O,1.0 μmol/L CuSO4·5H2O,1.0 μmol/L ZnSO4·7H2O,0.2 μmol/L CoSO4·7H2O,1.3 mmol/L KH2PO4,2 mmol/L K2SO4,4 mmol/L CaCl2,1.5 mmol/L MgSO4,5 mmol/L NH4NO3和50 μmol/L EDTA-Fe.培养液配置所用药品均为优级纯,其中,ZnSO4·7H2O试剂中w(Cd)不高于0.000 5%.

1.2 试验设计

水稻种子在30%双氧水中浸泡15 min后用去离子水冲洗干净,移栽到潮湿的珍珠岩中孵育,3周后选择生长正常、长势均一的水稻幼苗转移到含有800 mL培养液的PVC盆中进行培养.设置两组试验,分别研究Zn和根表铁膜含量对水稻吸收Cd的影响:①第1组试验设置6个处理,分别将培养液中c(Zn)调整为0、2、5、10、15和20 μmol/L(依次记为Zn0、Zn2、Zn5、Zn10、Zn15和Zn20),每个处理设置3个平行;Cd以CdSO4的形式添加,各处理中c(Cd)均为0.1 μmol/L;用0.1 mol/L KOH或HCl溶液调节培养液的pH至5.5,每4 d更换一次培养液. ②第2组试验设置高铁膜和低铁膜两种处理.为使水稻幼苗根系表面形成高、低两种含量的铁膜,先分别在50和3 μmol/L EDTA-Fe的无Cd培养液中培养水稻幼苗1 d,然后均在含有0.1 μmol/L Cd和50 μmol/L EDTA-Fe的培养液中培养3 d;由于在含Cd培养液培养过程中,水稻幼苗有新的根系生成,为使新根生成的铁膜含量不同,再分别在50和3 μmol/L EDTA-Fe的无Cd培养液中进行培养;重复上述步骤,直到试验结束.第2组试验的培养液同样用0.1 mol/L KOH或HCl溶液调节pH至5.5.

两组试验均在可控温室中进行,每天14 h光照,昼夜温度分别维持在28和20 ℃,相对湿度为70%,共培育20 d.

1.3 根表铁膜的提取与测定

水稻幼苗收割后,在24 h内用连二亚硫酸钠-柠檬酸钠-碳酸氢钠法(DCB)提取水稻幼苗根表面上的铁膜[12].在室温(20~25 ℃)下,将水稻幼苗的整个根系浸泡在30 mL含有0.03 mol/L柠檬酸钠(Na3C6H5O7·2H2O,优级纯)、0.125 mol/L碳酸氢钠(NaHCO3,优级纯)和0.6 g连二亚硫酸钠(Na2S2O4,分析纯)的溶液中60 min,用去离子水将根清洗3次,将清洗液并入DCB提取液中.用去离子水将所得溶液定容到50 mL. DCB提取液先用0.45 μm滤膜过滤,再用ICP-MS(Agilent-7500,安捷伦,美国)测定ρ(Mn)和ρ(Fe).铁膜生成量以w(Fe+Mn)表示.

1.4 植物样品的测定

根表铁膜提取后,将根和地上部置入烘箱,70 ℃下烘干72 h, 称取根和地上部的质量.水稻幼苗生物量等于根和地上部的质量之和.水稻样品采用浓硝酸和高氯酸(优级纯)联合消解法消解[13],将消解液冷却后定容至25 mL.定容后的消解液用0.45 μm滤膜过滤,用ICP-MS测定ρ(Cd)和ρ(Zn).

1.5 数据处理与分析

所有数据使用Excel 2016和SPSS 19.0进行分析、处理,使用Origin 2018绘图.

2 结果与讨论 2.1 不同浓度Zn处理对水稻幼苗生物量的影响

不同浓度Zn处理下,Z547和J402两种水稻幼苗的生物量(以干质量计)如图 1所示.由图 1可见,随着培养液中c(Zn)的增加,Z547和J402水稻生物量呈现相似的先增后减的变化趋势,二者分别在c(Zn)为2和10 μmol/L时达到最大值(分别为0.54和0.31g/株),该现象与其他学者[9, 14]的结果类似.这是因为Zn作为一种常见的营养元素,其含量较低时会促进植物生长,而含量较高时会对植物产生毒害作用[15].

注:柱上字母不同表示在0.05水平上具有显著性差异,字母相同表示不具有显著性差异.下同. 图 1 不同浓度Zn处理下水稻幼苗的生物量 Fig.1 The biomasses of rice seedlings under different concentrations of Zn

不同浓度Zn处理下,随着水培液中c(Zn)的增加,Z547和J402水稻根和地上部w(Zn)也随之增加(见表 1).根据世界卫生组织的报道,植物生长受到抑制的叶片中临界w(Zn)一般为200~300 mg/kg[16],但对于同一物种,不同品种叶片中临界w(Zn)以及水培条件下Zn对植物产生抑制作用的临界c(Zn)差别较大,如萝卜产量减少50%的叶片中临界w(Zn)为36~1 013 mg/kg[17];徐建明等[14]观察到,培养液中Zn对水稻(淮稻9号)幼苗生长产生抑制作用的临界c(Zn)为15.4 μmol/L;陈光才等[18]发现,当c(Zn)达到40 μmol/L时,Zn对水稻(IR8192和IR26)的生长仍无抑制作用.该研究中,Zn对不同品种水稻生长产生抑制作用的叶片中临界w(Zn)或培养液中临界c(Zn)存在较大差异,Zn对Z547和J402两种水稻幼苗生长产生抑制作用的临界c(Zn)分别为2和10 μmol/L,此时两种水稻幼苗地上部的w(Zn)分别达到65.42和185.66 mg/kg.因此,Z547和J402两种水稻对于Zn的耐性不同,其中J402的耐性更强.

表 1 不同浓度Zn处理下水稻幼苗中w(Zn) Table 1 The concentrations of Zn in rice seedlings under different concentrations of Zn 
2.2 不同浓度Zn处理对水稻幼苗根表铁膜中w(Mn)和w(Fe)的影响

不同浓度Zn处理下水稻幼苗根表铁膜中w(Mn)和w(Fe)如表 2所示.铁膜的主要成分是铁氧化物,w(Fe)远高于w(Mn),占铁膜生成量的89.3%以上,w(Mn)占比仅为3.1%~10.7%.由表 2可见,Z547和J402两种水稻幼苗铁膜中w(Mn)和w(Fe)呈先减后增的趋势.当培养液中c(Zn)为5 μmol/L时,Z547水稻幼苗铁膜中w(Mn)、w(Fe)和w(Fe+Mn)均达到最小值,分别为49.87、724.96和774.83 mg/kg;而当培养液中c(Zn)为2 μmol/L时,J402水稻幼苗铁膜中w(Fe)和w(Fe+Mn)达到最小值,分别为1 021.58和1 073.95 mg/kg,而w(Mn)在c(Zn)为5 μmol/L时达到最小值(48.94 mg/kg).综上,Zn对于水稻幼苗根表铁膜的生成起着至关重要的作用.李虹呈等[19]研究显示,随着土壤中w(有效态Zn)的升高〔w(有效态Zn)换算成0.01 mol/L CaCl2提取液中c(Zn)为5.9~66.6 μmol/L〕,两种水稻(湘晚籼12和威优46)成熟期根表铁膜中w(Fe)逐渐增加,这与笔者研究中高浓度Zn(5~20 μmol/L)条件下水稻幼苗根表铁膜中w(Fe)的变化趋势一致.

表 2 不同浓度Zn处理下水稻幼苗根表铁膜中w(Mn)和w(Fe) Table 2 The concentrations of Mn and Fe in iron plaque under different concentrations of Zn 

目前,关于Zn对根表铁膜生成的影响及其机制的研究较少,而对于铁膜形成的主控因素方面的研究较多.环境中的Fe2+、植物根系的径向氧损失与铁膜的生成密切相关.其中,c(Fe2+)的增加能够促进铁膜生成[20],而径向氧损失较高的水稻根系也可以形成更多的铁膜[21].在水稻根细胞质膜上,转运子OsIRT1介导二价金属离子(如Fe2+、Zn2+和Cd2+)的运输[22].缺Zn处理会引起转运子OsIRT1的过量表达,从而促进水稻对Fe2+的吸收[23].该研究中,在无Zn处理(Zn0)下,水稻幼苗对Fe2+的吸收量增加,使得培养液中c(Fe2+)相对较低,而高Zn处理可阻碍水稻幼苗对其他元素(如Fe和Mn)的吸收[24],使培养液中c(Fe2+)处于较高水平.低Zn处理下水生植物根系径向氧损失较高,而高Zn供应下径向氧损失显著降低[25-26].在低Zn和高Zn两种水平下,培养液中的Fe2+和根系的径向氧损失对铁膜生成的作用相反.因此,Zn对铁膜生成的影响,可能是培养液中Fe2+和根系径向氧损失综合作用的结果.

2.3 不同浓度Zn处理对水稻幼苗累积Cd的影响

不同浓度Zn处理对水稻幼苗地上部和根中w(Cd)的影响如图 2所示.由图 2可见,Z547根和地上部中的w(Cd)分别为31.65~122.58和11.47~23.58 mg/kg;J402根和地上部中w(Cd)分别为22.58~41.67和14.36~23.99 mg/kg.两个品种水稻幼苗地上部中w(Cd)呈现一致的变化趋势,即均随培养液中c(Zn)的增加而降低,分别在5和2 μmol/L时达到最小值,之后迅速增加并趋于稳定.两种水稻根中w(Cd)的变化趋势与地上部类似,但是在达到最小值后呈现逐渐增加的趋势.由表 2图 2可以看出,不同浓度Zn处理下根表铁膜生成量与水稻幼苗w(Cd)的变化趋势相同.相关性分析结果显示,水稻幼苗各部位中w(Cd)与w(Mn)、w(Fe)、w(Fe+Mn)均呈显著正相关(见表 3),表明根表铁膜能够促进水稻对Cd的吸收,这与ZHOU等[27]的研究结果一致.

图 2 不同浓度Zn处理下水稻幼苗各部位中w(Cd) Fig.2 The concentrations of Cd in rice seedling tissues under different concentrations of Zn

表 3 水稻幼苗中w(Cd)与根表铁膜中w(Mn)、w(Fe)、w(Fe+Mn)的相关性 Table 3 Correlation analysis of the concentrations of Cd in rice seedlings and the concentrations of Mn, Fe and Fe+Mn in iron plaque

低铁膜和高铁膜两种处理后,水稻幼苗根表铁膜中w(Mn)和w(Fe)如图 3所示.由图 3可见,低铁膜和高铁膜处理后,Z547铁膜中w(Mn)分别为30.98和80.51 mg/kg,w(Fe)分别为857.10和1 437.67 mg/kg;J402铁膜中w(Mn)分别为66.19和61.86 mg/kg,w(Fe)分别为1 432.27和2 129.94 mg/kg.可以看出,高铁膜处理下两种水稻幼苗铁膜中w(Fe)显著高于低铁膜处理.高铁膜处理下Z547铁膜中w(Mn)显著高于低铁膜处理,而对于J402,两个处理间铁膜中w(Mn)无显著性差异.高铁膜处理下两个品种水稻幼苗根和地上部中w(Cd)均高于低铁膜处理(见图 4),进一步表明铁膜生成的增多会促进水稻幼苗对Cd的吸收.因此,Zn能够通过控制根表铁膜的生成来影响水稻幼苗对Cd的累积.

注:**表示不同处理间在0.01水平上具有显著性差异. 图 3 低铁膜和高铁膜两种处理下水稻幼苗铁膜中w(Mn)和w(Fe) Fig.3 The concentrations of Mn and Fe in iron plaque after low iron plaque and high iron plaque treatments

注:*表示不同处理间在0.05水平上具有显著性差异. 图 4 低铁膜和高铁膜两种处理下水稻幼苗中w(Cd) Fig.4 The concentrations of Cd in rice seedlings after low iron plaque and high iron plaque treatments

目前,根表铁膜在重金属的吸收和累积中发挥的作用并没有一致的结论.有研究认为,铁膜可以固定环境中Cd和As等重金属并减少植物对它们的吸收[12, 20],但也有文献[28-29]报道了相反的结果.铁膜的生成量是造成结论不一致的主要原因,一般而言,生成量较少时,铁膜能够促进植物对重金属的吸收,生成量较多时则会起到阻碍作用,如ZHANG等[28]发现,当铁膜生成量达到12.9 g/kg时,铁膜会显著增加水稻对Zn的吸收,而当铁膜生成量达到24.9 g/kg时,水稻中w(Zn)显著降低. XU等[29]发现,铁膜对Cr的累积也存在相似的作用.一些学者[5, 20, 30]认为铁膜会抑制水稻对Cd的吸收,而刘敏超等[31]认为铁膜在一定含量范围内会促进水稻对Cd的累积.笔者和刘敏超等[31]的研究中,铁膜中w(Fe)远低于其他研究结果(见表 4),表明铁膜促进水稻幼苗Cd累积的原因是铁膜生成量较少.在铁膜生成量较少的条件下,铁膜对根系吸收重金属的阻碍作用较小,同时水稻根系有机酸的分泌会活化铁膜所富集的元素[32],使其被植物吸收,在这一过程中Cd被同时释放出来,而铁膜含量越高,铁膜固定的Cd越多[27],活化后会释放更多的Cd,从而增加水稻对Cd的吸收.另外.低Zn处理会使水稻处于缺Zn状态,当Zn含量过高时,不利于水稻对其他营养元素的摄取,水稻也会处于相对营养缺乏状态.缺Zn和缺Fe能够促进根系有机酸的分泌[28, 33],增加铁膜中Cd的活化,进一步提高水稻对Cd的累积.

表 4 水稻根表铁膜中w(Fe)及其对Cd累积影响的比较 Table 4 The concentrations of iron plaque in different studies and their effects on Cd accumulation in rice

在相同试验条件下,Z547和J402两种水稻幼苗根中w(Cd)均高于地上部,而根中w(Zn)一般低于地上部(见表 1图 2). Cd为水稻生长的非必需元素,水稻会通过植物螯合肽螯合、液泡阻隔等方式将其固定在根部[34-35],阻碍其向地上部转移,而Zn为必需元素,各品种的不同组织对Zn的生理需求和耐受性不同,对Zn的吸收和累积差别较大[15-16],如碧玉早糯、26715和浙农921等品种水稻分蘖期地上部w(Zn)高于根[36],与笔者研究结果类似,而KDML105、PSL2和RD53等水稻品种[37]则与笔者研究结果相反. Z547和J402分别是Cd的高累积和低累积品种,除Zn5处理外,Z547根中w(Cd)明显高于J402,但两种水稻地上部w(Cd)差异较小. Cd的高累积和低累积品种的筛选主要依据籽粒中w(Cd)是否超过Cd的限量标准确定[38].籽粒中的Cd主要来自于韧皮部汁液中Cd的沉积,而水稻幼苗根和地上部的Cd分别来源于对环境中Cd的吸收和木质部介导的Cd由根向地上部的转移[39].尽管Cd的高累积和低累积品种间籽粒中w(Cd)会表现出明显差异,但水稻幼苗根、地上部的Cd与籽粒中的Cd来源不一,且Zn对不同品种水稻幼苗Cd累积的影响(抑制或促进)及其作用强度不同,因此根和地上部w(Cd)在高低累积品种间不一定存在较大差别.

3 结论

a) 水稻对Cd的吸收和累积与培养液中的c(Zn)密切相关.随着c(Zn)的增加,Z547和J402水稻幼苗中的w(Cd)先显著降低,分别在c(Zn)为5和2 μmol/L时达到最小值,随后逐渐升高. Z547根和地上部的w(Cd)最小值分别为31.65和11.47 mg/kg,J402根和地上部的w(Cd)最小值分别为22.58和14.36 mg/kg.

b) 不同浓度Zn处理下水稻幼苗根表铁膜的生成量具有明显差异,Z547和J402水稻根表铁膜中的w(Fe+Mn)分别为774.83~1 903.69和1 073.95~2 313.27 mg/kg. Zn对根表铁膜的形成表现为先抑制后促进的作用.

c) 高铁膜处理下Z547和J402两个品种水稻幼苗根和地上部w(Cd)均高于低铁膜处理,不同浓度Zn处理下水稻各部位的w(Cd)均与铁膜中的w(Mn)、w(Fe)、w(Fe+Mn)呈显著正相关,表明根表铁膜生成的增多能够促进水稻幼苗对Cd的吸收,Zn能够通过控制根表铁膜的生成而间接影响水稻幼苗对Cd的累积.

参考文献
[1]
CHEN Hongping, YANG Xinping, WANG Peng, et al. Dietary cadmium intake from rice and vegetables and potential health risk:a case study in Xiangtan, southern China[J]. Science of the Total Environment, 2018, 639: 271-277. DOI:10.1016/j.scitotenv.2018.05.050 (0)
[2]
RODDA M S, REID R J. Examination of the role of iron deficiency response in the accumulation of Cd by rice grown in paddy soil with variable irrigation regimes[J]. Plant and Soil, 2013, 371(1): 219-236. (0)
[3]
SHAO Guosheng, CHEN Mingxue, WANG Weixia, et al. Iron nutrition affects cadmium accumulation and toxicity in rice plants[J]. Plant Growth Regulation, 2007, 53(1): 33-42. DOI:10.1007/s10725-007-9201-3 (0)
[4]
HUANG Qingqing, LIU Yiyun, XU Qin, et al. Selenite mitigates cadmium-induced oxidative stress and affects Cd uptake in rice seedlings under different water management systems[J]. Ecotoxicology and Environmental Safety, 2019, 168: 486-494. DOI:10.1016/j.ecoenv.2018.10.078 (0)
[5]
CAO Zhenzhen, QIN Meiling, LIN Xiaoyan, et al. Sulfur supply reduces cadmium uptake and translocation in rice grains (Oryza sativa L.) by enhancing iron plaque formation, cadmium chelation and vacuolar sequestration[J]. Environmental Pollution, 2018, 238: 76-84. DOI:10.1016/j.envpol.2018.02.083 (0)
[6]
YONEYAMA T, ISHIKAWA S, FUJIMAKI S. Route and regulation of zinc, cadmium, and iron transport in rice plants (Oryza sativa L.) during vegetative growth and grain filling:metal transporters, metal speciation, grain Cd reduction and Zn and Fe biofortification[J]. International Journal of Molecular Sciences, 2015, 16(8): 19111-19129. DOI:10.3390/ijms160819111 (0)
[7]
HE J Y, REN Y F, WANG F J, et al. Characterization of cadmium uptake and translocation in a cadmium-sensitive mutant of rice (Oryza sativa L.ssp.japonica)[J]. Archives of Environmental Contamination and Toxicology, 2009, 57(2): 299-306. (0)
[8]
曲荣辉, 张曦, 李合莲, 等. 不同锌水平对低剂量镉在水稻中迁移能力的影响[J]. 中国生态农业学报, 2016, 24(4): 517-523.
QU Ronghui, ZHANG Xi, LI Helian, et al. Effects of zinc level on low dose cadmium transport in rice plant[J]. Chinese Journal of Eco-Agriculture, 2016, 24(4): 517-523. (0)
[9]
GREEN C E, CHANEY R L, BOUWKAMP J. Increased zinc supply does not inhibit cadmium accumulation by rice (Oryza sativa L.)[J]. Journal of Plant Nutrition, 2016, 40(6): 869-877. (0)
[10]
WANG Meie, YANG Yang, CHEN Weiping. Manganese, zinc, and pH affect cadmium accumulation in rice grain under field conditions in southern China[J]. Journal of Environmental Quality, 2018, 47(2): 306-311. (0)
[11]
唐非, 雷鸣, 唐贞, 等. 不同水稻品种对镉的积累及其动态分布[J]. 农业环境科学学报, 2013, 32(6): 1092-1098.
TANG Fei, LEI Ming, TANG Zhen, et al. Accumulation characteristic and dynamic distribution of Cd in different genotypes of rice (Oryza sativa L.)[J]. Journal of Agro-Environment Science, 2013, 32(6): 1092-1098. (0)
[12]
LIU W J, ZHU Y G, SMITH F A, et al. Do phosphorus nutrition and iron plaque alter arsenate (As) uptake by rice seedlings in hydroponic culture?[J]. New Phytologist, 2004, 162(2): 481-488. DOI:10.1111/j.1469-8137.2004.01035.x (0)
[13]
孙约兵, 王永昕, 李烨, 等. Cd-Pb复合污染土壤钝化修复效率与生物标记物识别[J]. 环境科学研究, 2015, 28(6): 951-958.
SUN Yuebing, WANG Yongxin, LI Ye, et al. Effectiveness of immobilization remediation of Cd and Pb combined contaminated soil and biomarker identification[J]. Research of Environmental Sciences, 2015, 28(6): 951-958. (0)
[14]
徐建明, 李才生, 毛善国, 等. 锌对水稻幼苗生长及体内SOD、POD活性的影响[J]. 安徽农业科学, 2008(3): 877-878.
XU Jianming, LI Caisheng, MAO Shanguo, et al. Effect of zinc on rice seedlings growth and activity of sod and pod[J]. Journal of Anhui Agricultural Sciences, 2008(3): 877-878. DOI:10.3969/j.issn.0517-6611.2008.03.020 (0)
[15]
BROADLEY M, WHITE P, HAMMOND J P, et al. Zinc in plants[J]. New Phytologist, 2007, 173(4): 677-702. DOI:10.1111/j.1469-8137.2007.01996.x (0)
[16]
SIMON-HETTICH B, FRAUNHOFER A W, WAGNER D, et al.Environmental Health Criteria 221[R].Geneva: World Health Organization, 2001. (0)
[17]
DAVIES B E. Radish as an indicator plant for derelict land:uptake of zinc at toxic concentrations[J]. Communications in Soil Science and Plant Analysis, 1993, 24(15/16): 1883-1895. (0)
[18]
陈光才, 李迎春, 王人民, 等. Zn2+活度对不同耐低锌水稻基因型生长及锌吸收的影响[J]. 中国生态农业学报, 2006, 14(2): 56-58.
CHEN Guangcai, LI Yingcun, WANG Renmin, et al. Effects of Zn2+ activity on seedling growth and Zn uptake of rice differing in resistance to Zn deficit[J]. Chinese Journal of Eco-Agriculture, 2006, 14(2): 56-58. (0)
[19]
李虹呈, 王倩倩, 贾润语, 等. 外源锌对水稻各部位镉吸收与累积的拮抗效应[J]. 环境科学学报, 2018, 38(12): 4854-4863.
LI Hongcheng, WANG Qianqian, JIA Runyu, et al. Antagonistic effects of exogenous zinc on uptake and accumulation of cadmium in various rice organs[J]. Acta Scientiae Circumstantiae, 2018, 38(12): 4854-4863. (0)
[20]
LIU Houjun, ZHANG Junling, CHRISTIE P, et al. Influence of iron plaque on uptake and accumulation of Cd by rice (Oryza sativa L.) seedlings grown in soil[J]. Science of the Total Environment, 2008, 394(2/3): 361-368. (0)
[21]
WANG Xun, YAO Haixin, WONG Ming Hung, et al. Dynamic changes in radial oxygen loss and iron plaque formation and their effects on Cd and As accumulation in rice (Oryza sativa L.)[J]. Environmental Geochemistry and Health, 2013, 35(6): 779-788. DOI:10.1007/s10653-013-9534-y (0)
[22]
URAGUCHI S, FUJIWARA T. Cadmium transport and tolerance in rice:perspectives for reducing grain cadmium accumulation[J]. Rice, 2012, 5(1): 5. DOI:10.1186/1939-8433-5-5 (0)
[23]
SICHUL L, AN G. Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice[J]. Plant Cell & Environment, 2010, 32(4): 408-416. (0)
[24]
ABBAS G, KHAN M Q, JAMIL M, et al. Nutrient uptake, growth and yield of wheat (Triticum aestivum) as affected by zinc application rates[J]. Pakistan Journal of Botany, 2009, 43(1): 607-616. (0)
[25]
YANG Junxing, TAM F Y, YE Zhihong. Root porosity, radial oxygen loss and iron plaque on roots of wetland plants in relation to zinc tolerance and accumulation[J]. Plant and Soil, 2014, 374(1): 815-828. (0)
[26]
CHENG H, LIU Y, TAM N F Y, et al. The role of radial oxygen loss and root anatomy on zinc uptake and tolerance in mangrove seedlings[J]. Environmental Pollution, 2010, 158(5): 1189-1196. DOI:10.1016/j.envpol.2010.01.025 (0)
[27]
ZHOU Hang, ZHU Wei, YANG Wentao, et al. Cadmium uptake, accumulation, and remobilization in iron plaque and rice tissues at different growth stages[J]. Ecotoxicology and Environmental Safety, 2018, 152: 91-97. DOI:10.1016/j.ecoenv.2018.01.031 (0)
[28]
ZHANG Xike, ZHANG Fusuo, MAO Daru. Effect of iron plaque outside roots on nutrient uptake by rice (Oryza sativa L.).zinc uptake by Fe-deficient rice[J]. Plant and Soil, 1998, 202(1): 33-39. DOI:10.1023/A:1004322130940 (0)
[29]
XU Bo, WANG Fang, ZHANG Qiuhong, et al. Influence of iron plaque on the uptake and accumulation of chromium by rice (Oryza sativa L.) seedlings:insights from hydroponic and soil cultivation[J]. Ecotoxicology and Environmental Safety, 2018, 162: 51-58. DOI:10.1016/j.ecoenv.2018.06.063 (0)
[30]
胡莹, 黄益宗, 黄艳超, 等. 不同生育期水稻根表铁膜的形成及其对水稻吸收和转运Cd的影响[J]. 农业环境科学学报, 2013, 32(3): 432-437.
HU Ying, HUANG Yizong, HUANG Yanchao, et al. Formation of iron plaque on root surface and its effect on Cd uptake and translocation by rice (Oryza sativa L.) at different growth stages[J]. Journal of Agro-Environment Science, 2013, 32(3): 432-437. (0)
[31]
刘敏超, 李花粉, 夏立江, 等. 不同基因型水稻吸镉差异及其与根表铁氧化物胶膜的关系[J]. 环境科学学报, 2000, 20(5): 592-596.
LIU Minchao, LI Huafen, XIA Lijian, et al. Differences of cadmium uptake by rice genotypes and relationship between the iron oxide plaque and cadmium uptake[J]. Acta Scientiae Circumstantiae, 2000, 20(5): 592-596. DOI:10.3321/j.issn:0253-2468.2000.05.017 (0)
[32]
SEBASTIAN A, PRASAD M N V. Iron plaque decreases cadmium accumulation in Oryza sativa L. and serves as a source of iron[J]. Plant Biology, 2016, 18(6): 1008-1015. DOI:10.1111/plb.12484 (0)
[33]
ZHAO Kuan, WU Yanyou. Effect of Zn deficiency and excessive bicarbonate on the allocation and exudation of organic acids in two Moraceae plants[J]. Acta Geochimica, 2018, 37(1): 125-133. DOI:10.1007/s11631-017-0174-2 (0)
[34]
MIYADATE H, ADACHI S, HIRAIZUMI A, et al. OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles[J]. New Phytologist, 2011, 189(1): 190-199. DOI:10.1111/j.1469-8137.2010.03459.x (0)
[35]
GREEN I, TIBBETT M. Differential uptake, partitioning and transfer of Cd and Zn in the soil-pea plant-aphid system[J]. Environmental Science & Technology, 2008, 42(2): 450-455. (0)
[36]
李志刚, 叶正钱, 方云英, 等. 供锌水平对水稻生长和锌积累和分配的影响[J]. 中国水稻科学, 2003, 17(1): 62-67.
LI Zhigang, YE Zhengqian, FANG Yunying, et al. Effect of zinc on plant growth and zinc partitioning in rice plant[J]. Chinese Journal of Rice Science, 2003, 17(1): 62-67. (0)
[37]
SAENGWILAI P, MEEINKUIRT W, PICHTEL J, et al. Influence of amendments on Cd and Zn uptake and accumulation in rice (Oryza sativa L.) in contaminated soil[J]. Environmental Science and Pollution Research, 2017, 24(18): 1-12. (0)
[38]
唐皓, 李廷轩, 张锡洲, 等. 水稻镉高积累材料的筛选及其镉积累特征研究[J]. 生态环境学报, 2015, 24(11): 1910-1916.
TANG Hao, LI Tingxuan, ZHANG Xizhou. Screening of rice cultivars with high cadmium accumulation and its cadmium accumulation characteristics[J]. Ecology and Environment, 2015, 24(11): 1910-1916. (0)
[39]
FUJIMAKI S, SUZUI N, ISHIOKA N, et al. Tracing cadmium from culture to spikelet:noninvasive imaging and quantitative characterization of absorption, transport, and accumulation of cadmium in an intact rice plant[J]. Plant Physiology, 2010, 152(4): 1796-1806. (0)