留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多目标模型的中国低成本碳达峰、碳中和路径

王深 吕连宏 张保留 王斯一 吴静 付加锋 罗宏

王深, 吕连宏, 张保留, 王斯一, 吴静, 付加锋, 罗宏. 基于多目标模型的中国低成本碳达峰、碳中和路径[J]. 环境科学研究, 2021, 34(9): 2044-2055. doi: 10.13198/j.issn.1001-6929.2021.06.18
引用本文: 王深, 吕连宏, 张保留, 王斯一, 吴静, 付加锋, 罗宏. 基于多目标模型的中国低成本碳达峰、碳中和路径[J]. 环境科学研究, 2021, 34(9): 2044-2055. doi: 10.13198/j.issn.1001-6929.2021.06.18
WANG Shen, Lü Lianhong, ZHANG Baoliu, WANG Siyi, WU Jing, FU Jiafeng, LUO Hong. Multi Objective Programming Model of Low-Cost Path for China's Peaking Carbon Dioxide Emissions and Carbon Neutrality[J]. Research of Environmental Sciences, 2021, 34(9): 2044-2055. doi: 10.13198/j.issn.1001-6929.2021.06.18
Citation: WANG Shen, Lü Lianhong, ZHANG Baoliu, WANG Siyi, WU Jing, FU Jiafeng, LUO Hong. Multi Objective Programming Model of Low-Cost Path for China's Peaking Carbon Dioxide Emissions and Carbon Neutrality[J]. Research of Environmental Sciences, 2021, 34(9): 2044-2055. doi: 10.13198/j.issn.1001-6929.2021.06.18
碳中和理论与实践专题[编者按]:
我国力争2030年前实现碳达峰,2060年前实现碳中和,这是以习近平同志为核心的党中央经过深思熟虑做出的重大战略决策. 实现碳达峰、碳中和,是我国实现可持续发展、高质量发展的内在要求,也是推动构建人类命运共同体的必然选择,需在构建清洁低碳安全高效的能源体系、开发绿色低碳技术、完善绿色低碳政策和市场体系、提升生态碳汇能力等多领域付出巨大努力,这必将推动我国经济和社会的系统性变革. 本专栏围绕碳中和实现路径、碳减排效果评估、碳市场建设、可持续能源政策、能源-环境-经济系统模型、大气污染物与温室气体协同控制、负碳技术开发等主题,报道碳中和理论与实践研究最新成果,以期为我国如期实现2030年前碳达峰、2060年前碳中和的目标提供科技支撑.

基于多目标模型的中国低成本碳达峰、碳中和路径

doi: 10.13198/j.issn.1001-6929.2021.06.18
基金项目: 

中央级公益性科研院所基本科研业务专项 2019YSKY001

详细信息
    作者简介:

    王深(1989-), 男, 山东人, 助理研究员, 博士, 主要从事能源规划模型、能源系统优化研究, wshen1581@163.com

    通讯作者:

    吕连宏(1981-), 男, 天津人, 正高级工程师, 博士, 主要从事能源与环境经济研究, lvlh@craes.org.cn

  • 中图分类号: X24;F205

Multi Objective Programming Model of Low-Cost Path for China's Peaking Carbon Dioxide Emissions and Carbon Neutrality

Funds: 

Basic Scientific Research Funds in National Nonprofit Institutes, China 2019YSKY001

  • 摘要: 为探寻我国低成本碳达峰、碳中和路径,以我国主要耗煤产业、电力、供热、交通以及森林碳汇量为研究对象,构建基于低成本碳达峰、碳中和路径的多目标模型.以成本最小、二氧化碳排放量最少以及大气污染物排放量最少为模型的多目标,以我国2030年前碳达峰以及2060年前碳中和为研究目标设置相应约束条件,并设置产业需求、电力需求、供暖需求、交通需求、各行业新能源比例、污染物控制等约束条件,其中产业考虑煤炭消耗量较大的钢铁、化工、建材以及其他行业,电力考虑火电、核电、风电、太阳能.此外,模型除考虑森林碳汇外,还考虑了碳捕获与封存(CCS)作为实现碳达峰、碳中和的技术手段.结果表明:①我国碳达峰、碳中和实现的可行性较高,2030年及2060年的时间节点设定科学,碳达峰当年的各行业成本约为17.54×1012元,代表行业碳达峰、碳中和时的二氧化碳排放量分别为68.63×108和34.50×108 t.②以钢铁、化工、建材等为代表的工业转型可行性较低,且对于碳达峰、碳中和目标实现的贡献较小;电力、供热以及交通转型可行性较高,且对碳达峰、碳中和目标实现的贡献较大,电力二氧化碳排放量占比在2030年与2060年将分别达72.86%和43.34%.③煤电装机容量将在规划期内持续减少,需取消部分已规划的煤电项目并改造和提前淘汰部分已有煤电设备;相对风力发电与太阳能发电装机容量持续增加,二者装机容量总和于2030年达12×108 kW,于2060年达24×108 kW.④CCS将为碳达峰、碳中和目标实现提供助力.研究显示,未来我国碳减排工作将重点聚焦于电力系统,其次为供热与交通,建议根据行业特征制定不同省份、不同经济圈的绿色发展模式.

     

  • 图  1  2021—2060年各代表年产业煤炭消耗量

    Figure  1.  Industrial coal consumption in representative years from 2021 to 2060

    图  2  2021—2060年各代表年不同发电方式规划的发电量

    Figure  2.  Power generation by different technologies in representative years from 2021 to 2060

    图  3  2021—2060年各代表年不同发电方式规划的发电量占比

    Figure  3.  Proportion of various power generations in representative years from 2021 to 2060

    图  4  2021—2060年各代表年不同发电方式的装机量

    Figure  4.  Installed capacity of electric power in representative years from 2021 to 2060

    图  5  2021—2060年各代表年不同发电方式的装机量占比

    Figure  5.  Proportion of installed capacity in representative years from 2021 to 2060

    图  6  2021—2060年各代表年燃煤采暖与非燃煤采暖的比例

    Figure  6.  Proportion of coal-fired heating and non-coal-fired heating in representative years from 2021 to 2060

    图  7  2021—2060年各代表年燃油汽车的汽油消耗量

    Figure  7.  Gasoline consumption of fuel vehicles in representative years from 2021 to 2060

    图  8  2021—2060年各代表年新能源汽车的耗电量

    Figure  8.  Electrical consumption of new energy vehicles in representative years from 2021 to 2060

    图  9  2021—2060年各代表年CCS技术的二氧化碳捕集量

    Figure  9.  Carbon capture of CCS in representative years from 2021 to 2060

    图  10  2021—2060年各代表年重点行业的二氧化碳排放总量

    Figure  10.  Carbon dioxide emissions of key industries in representative years from 2021 to 2060

    图  11  2021—2060年各代表年重点行业二氧化碳排放量比例

    Figure  11.  Proportion of carbon dioxide emissions in representative years from 2021 to 2060

    图  12  2021—2060年各代表年重点行业的系统成本

    Figure  12.  Cost of key industries in representative years from 2021 to 2060

    表  1  我国不同发电方式的发电量与装机容量

    Table  1.   Electric power generation and installed capacity by different technologies in China

    项目 2016年 2017年 2018年 2019年
    燃煤发电 发电量/(108 kW·h) 39 457 41 498 49 795 51 654
    装机容量/(104 kW) 94 624 98 130 101 037 119 055
    核电 发电量/(108 kW·h) 2 132 2 481 2 944 3 484
    装机容量/(104 kW) 3 364 3 582 4 466 4 874
    风电 发电量/(108 kW·h) 2 409 3 034 3 253 3 577
    装机容量/(104 kW) 14 747 16 325 18 426 21 005
    太阳能发电 发电量/(108 kW·h) 665 1 166 894 1 172
    装机容量/(104 kW) 7 631 12 942 17 463 20 468
    下载: 导出CSV
  • [1] 习近平. 继往开来, 开启全球应对气候变化新征程: 在气候雄心峰会上的讲话[N]. 北京: 人民日报, 2020-12-13(1).
    [2] LI X, DAMARTZIS T, STADLER Z, et al. Decarbonization in complex energy systems: a study on the feasibility of carbon neutrality for switzerland in 2050[J]. Frontiers in Energy Research, 2020, 8: 549615. doi: 10.3389/fenrg.2020.549615
    [3] HUANAN L, QIN Q Q. Challenges for China's carbon emissions peaking in 2030: a decomposition and decoupling analysis[J]. Journal of Cleaner Production, 2019, 207(10): 857-865. http://www.onacademic.com/detail/journal_1000040881398710_063f.html
    [4] CHI Y, LIU Z, WANG X, et al. Provincial CO2 emission measurement and analysis of the construction industry under China's carbon neutrality target[J]. Sustainability, 2021, 13(4): 1876. doi: 10.3390/su13041876
    [5] SALVIA M, RECKIEN D, PIETRAPERTOSA F, et al. Will climate mitigation ambitions lead to carbon neutrality? an analysis of the local-level plans of 327 cities in the EU[J]. Renewable and Sustainable Energy Reviews, 2021, 135: 110253. doi: 10.1016/j.rser.2020.110253
    [6] 王燕军, 何巍楠, 宋国华, 等. 北京市2017年典型日机动车动态排放特征研究[J]. 环境科学研究, 2021, 34(1): 141-148. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20210115&flag=1

    WANG Yanjun, HE Weinan, SONG Guohua. Vehicular dynamic emission characteristics of typical days in Beijing in 2017[J]. Research of Environmental Sciences, 2021, 34(1): 141-148. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20210115&flag=1
    [7] 余碧莹, 赵光普, 安润颖, 等. 碳中和目标下中国碳排放路径研究[J]. 北京理工大学学报(社会科学版), 2021, 23(2): 17-24. https://www.cnki.com.cn/Article/CJFDTOTAL-BLDS202102003.htm

    YU Biying, ZHAO Guangpu, AN Runying. Research on China's CO2 emission pathway under carbon neutral target[J]. Journal of Beijing Institute of Technology (Social Sciences Edition), 2021, 23(2): 17-24. https://www.cnki.com.cn/Article/CJFDTOTAL-BLDS202102003.htm
    [8] 赵明轩, 吕连宏, 张保留, 等. 中国能源消费、经济增长与碳排放之间的动态关系[J]. 环境科学研究, 2021, 34(6): 1509-1522. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20210626&flag=1

    ZHAO Mingxuan, LÜ Lianhong, ZHANG Baoliu et al. The dynamic relationship among energy consumption, economic growth and carbon emissions in China[J]. Research of Environmental Sciences, 2021, 34(6): 1509-1522. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20210626&flag=1
    [9] BELBUTE J, PEREIRA A. Reference forecasts for CO2 emissions from fossil-fuel combustion and cement production in Portugal[J]. Energy Policy, 2020. doi: 10.1016/j.enpol.2020.111642.
    [10] DUAN Z, YANG Y, WANG L, et al. Temporal characteristics of carbon dioxide and ozone over a rural-cropland area in the Yangtze River Delta of eastern China[J]. Science of the Total Environment, 2020, 757: 143750. http://www.sciencedirect.com/science/article/pii/S0048969720372818
    [11] PATRICK F, SYLVIE B, RÉMI M C, et al. Achieving carbon neutrality for a future large greenhouse gas emitter in Quebec, Canada: a case study[J]. Atmosphere, 2020, 11(8): 810. doi: 10.3390/atmos11080810
    [12] 魏一鸣, 廖华, 余碧莹, 等. 中国能源报告(2018): 能源密集型部门绿色转型研究[M]. 北京: 科学出版社, 2018.
    [13] 刘燕华, 孟赤兵. 中国低碳年鉴(2017)[M]. 北京: 冶金工业出版社, 2018.
    [14] 国家能源局. 中国电力年鉴(2018)[M]. 北京: 中国电力出版社, 2019.
    [15] 国家统计局能源司. 中国能源统计年鉴(2018)[M]. 北京: 中国统计出版社有限公司, 2019.
    [16] 胡鞍钢. 中国实现2030年前碳达峰目标及主要途径[J]. 北京工业大学学报(社会科学版), 2021, 21(3): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-BGYS202103001.htm

    HU Angang. China's goal of achieving carbon peak by 2030 and its main approaches[J]. Journal of Beijing University of Technology (Social Sciences Edition), 2021, 21(3): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-BGYS202103001.htm
    [17] AN R, YU B, LI R, et al. Potential of energy savings and CO2 emission reduction in China's iron and steel industry[J]. Applied Energy, 2018, 226: 862-880. doi: 10.1016/j.apenergy.2018.06.044
    [18] LI X, YU B. Peaking CO2 emissions for China's urban passenger transport sector[J]. Energy Policy, 2019, 133: 110913. doi: 10.1016/j.enpol.2019.110913
    [19] TANG B, LI R, YU B, et al. How to peak carbon emissions in China's power sector: a regional perspective[J]. Energy Policy, 2018, 120: 365-381. doi: 10.1016/j.enpol.2018.04.067
    [20] LIN B, DU K. Energy and CO2 emissions performance in China's regional economies: do market-oriented reforms matter?[J]. Energy Policy, 2015, 78: 113-124. doi: 10.1016/j.enpol.2014.12.025
    [21] ZHANG C, YU B, CHEN J, et al. Green transition pathways for cement industry in China[J]. Resources, Conservation & Recycling, 2021, 166: 105355. http://www.sciencedirect.com/science/article/pii/S0959652621029802
    [22] 陈怡, 田川, 曹颖, 等. 中国电力行业碳排放达峰及减排潜力分析[J]. 气候变化研究进展, 2020, 16(5): 632-640. https://www.cnki.com.cn/Article/CJFDTOTAL-QHBH202005012.htm

    CHEN Yi, TIAN Chuan, CAO Ying, et al. Research on peaking carbon emissions of power sector in China and the emissions mitigation analysis[J]. Climate Change Research, 2020, 16(5): 632-640. https://www.cnki.com.cn/Article/CJFDTOTAL-QHBH202005012.htm
    [23] WANG S, XIE Y L, HUANG G H, et al. A structural adjustment optimization model for electric-power system management under multiple uncertainties: a case study of Urumqi City, China[J]. Energy Policy, 2021, 149: 112056. doi: 10.1016/j.enpol.2020.112056
    [24] WU P, GUO F, CAI B, et al. Co-benefits of peaking carbon dioxide emissions on air quality and health, a case of Guangzhou, China[J]. Journal of Environmental Management, 2021, 282: 111796. doi: 10.1016/j.jenvman.2020.111796
    [25] LI X, YU B. Peaking CO2 emissions for China's urban passenger transport sector[J]. Energy Policy, 2019, 133: 110913. doi: 10.1016/j.enpol.2019.110913
    [26] LIU D, XIAO B. Can China achieve its carbon emission peaking? a scenario analysis based on STIRPAT and system dynamics model[J]. Ecological Indicators, 2018, 93: 647-657. doi: 10.1016/j.ecolind.2018.05.049
    [27] 李慧, 王淑兰, 张文杰. 京津冀及周边地区"2+26"城市空气质量特征及其影响因素[J]. 环境科学研究, 2021, 34(1): 172-184. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20210118&flag=1

    LI Hui, WANG Shulan, ZHANG Wenjie. Characteristics and influencing factors of urban air quality in Beijing-Tianjin-Hebei and its surrounding areas ('2+26' cities)[J]. Research of Environmental Sciences, 2021, 34(1): 172-184. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=20210118&flag=1
    [28] WU D, GENGY, PAN H. Whether natural gas consumption bring double dividends of economic growth and carbon dioxide emissions reduction in China?[J]. Renewable and Sustainable Energy Reviews, 2021, 137: 110635. doi: 10.1016/j.rser.2020.110635
    [29] WU P, GUO F, CAI B, et al. Co-benefits of peaking carbon dioxide emissions on air quality and health, a case of Guangzhou, China[J]. Journal of Environmental Management, 2021, 282: 111796. doi: 10.1016/j.jenvman.2020.111796
    [30] WANG M, FENG C. How will the greening policy contribute to China's greenhouse gas emission mitigation? a non-parametric forecast[J]. Environmental Research, 2021, 195: 110779. doi: 10.1016/j.envres.2021.110779
    [31] JIANG Q, KHATTAK S, RAHMAN Z. Measuring the simultaneous effects of electricity consumption and production on carbon dioxide emissions (CO2e) in China: new evidence from an EKC-based assessment[J]. Energy, 2021, 229: 120616. doi: 10.1016/j.energy.2021.120616
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  462
  • HTML全文浏览量:  200
  • PDF下载量:  186
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-19
  • 修回日期:  2021-06-23

目录

    /

    返回文章
    返回