留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mo掺杂FeS2非均相Fenton催化剂的制备及催化性能研究

杨静文 方小峰 杨波

杨静文, 方小峰, 杨波. Mo掺杂FeS2非均相Fenton催化剂的制备及催化性能研究[J]. 环境科学研究, 2023, 36(5): 965-974. doi: 10.13198/j.issn.1001-6929.2022.12.10
引用本文: 杨静文, 方小峰, 杨波. Mo掺杂FeS2非均相Fenton催化剂的制备及催化性能研究[J]. 环境科学研究, 2023, 36(5): 965-974. doi: 10.13198/j.issn.1001-6929.2022.12.10
YANG Jingwen, FANG Xiaofeng, YANG Bo. Preparation and Study of Catalytic Properties of Mo Doped FeS2 Heterogeneous Fenton Catalysts[J]. Research of Environmental Sciences, 2023, 36(5): 965-974. doi: 10.13198/j.issn.1001-6929.2022.12.10
Citation: YANG Jingwen, FANG Xiaofeng, YANG Bo. Preparation and Study of Catalytic Properties of Mo Doped FeS2 Heterogeneous Fenton Catalysts[J]. Research of Environmental Sciences, 2023, 36(5): 965-974. doi: 10.13198/j.issn.1001-6929.2022.12.10

Mo掺杂FeS2非均相Fenton催化剂的制备及催化性能研究

doi: 10.13198/j.issn.1001-6929.2022.12.10
基金项目: 国家重点研发计划项目(No.2019YFC0408503);上海市“科技创新行动计划”扬帆计划项目(No.20YF1400100);中央高校基本科研业务费专项资金项目(No.2232020D-54)
详细信息
    作者简介:

    杨静文(1999-),女,河南焦作人,3195635388@qq.com

    通讯作者:

    方小峰(1989-),男,安徽安庆人,讲师,博士,主要从事工业废水处理及资源化研究,fxf595@dhu.edu.cn

  • 中图分类号: X703

Preparation and Study of Catalytic Properties of Mo Doped FeS2 Heterogeneous Fenton Catalysts

Funds: National Key Research and Development Program of China (No.2019YFC0408503); Shanghai Sailing Program, China (No.20YF1400100); Fundamental Research Funds for the Central Universities, China (No.2232020D-54)
  • 摘要: 为提高FeS2活化H2O2降解有机物的性能,本研究通过引入多价金属钼(Mo)制备得到Mo掺杂的FeS2催化剂(FeS2@Mo),并用于催化降解水中双酚A (BPA). 通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)、X射线衍射(XRD)对样品形貌和结构组成等进行表征. 研究了H2O2浓度、FeS2@Mo投加量、初始pH等条件对BPA降解效果的影响. 结果表明:①Mo掺杂的FeS2呈现花瓣形球体,尺寸500~1 000 nm. ②在条件为5 mmol/L H2O2、100 mg/L FeS2@Mo、pH=3.5时降解效果最优,且在该条件下反应10 min时BPA的降解率可达99.1%. ③淬灭试验和电子顺磁共振(EPR)试验的结果表明,该体系中的活性物种包括羟基自由基(·OH)、单线态氧(1O2)和超氧自由基(·O2),其中·OH和1O2占据主导地位. ④Mo的掺杂有助于提高反应体系中Fe2+的比率,提高Fenton催化效率. 研究显示,Mo的掺杂成功地提高了FeS2的催化性能,可以高效地降解水中的BPA,具有潜在的应用前景.

     

  • 图  1  FeS2@Mo和FeS2的SEM图

    Figure  1.  SEM images of FeS2@Mo and FeS2

    图  2  FeS2@Mo的TEM表征

    Figure  2.  Characterization of FeS2@Mo

    图  3  FeS2@Mo和FeS2的XRD图

    Figure  3.  XRD patterns of FeS2@Mo and FeS2

    图  4  FeS2和FeS2@Mo的XPS谱图

    Figure  4.  XPS patterns of FeS2 and FeS2@Mo

    图  5  不同催化体系下BPA的降解效果

    注:试验条件为BPA初始浓度20 mg/L,催化剂用量100 mg/L,H2O2用量5 mmol/L,溶液初始pH 3.5.

    Figure  5.  The degradation of BPA in different catalytic systems

    图  6  催化剂投加量对BPA降解效果的影响

    Figure  6.  The effects of catalyst dosage on the degradation of BPA

    图  7  H2O2投加量对BPA降解效果的影响

    Figure  7.  The effects of H2O2 dosage on the degradation of BPA

    图  8  初始pH对BPA降解效果的影响

    Figure  8.  The effects of initial pH on the degradation of BPA

    图  9  FeS2@Mo循环次数对BPA降解的影响

    Figure  9.  The effects of recycle times of FeS2@Mo on the degradation of BPA

    图  10  FeS2@Mo反应前后的表征

    Figure  10.  Characterization of FeS2@Mo used before and after

    图  11  Cl和HA对BPA降解效果的影响

    Figure  11.  The effects of Cl and HA on the degradation of BPA

    图  12  淬灭试验和不同体系的EPR图谱

    Figure  12.  Quenching experiments and EPR spectra in different systems

    图  13  不同体系中Fe2+/Fe3+随反应时间(t)的变化

    Figure  13.  The change of Fe2+/Fe3+ with reaction time (t) in different systems

    图  14  FeS2@Mo和FeS2反应前后的XPS图谱

    Figure  14.  XPS spectra of FeS2@Mo and FeS2 used before and after reaction

  • [1] OSCAR M,RODRIGUEZ N,PERALTA H J M,et al.Treatment technologies for emerging contaminants in water:a review[J].Chemical Engineering Journal,2017,323:361-380. doi: 10.1016/j.cej.2017.04.106
    [2] CHEN Y,LIN M,ZHUANG D.Wastewater treatment and emerging contaminants:bibliometric analysis[J].Chemosphere,2022,297:133932. doi: 10.1016/j.chemosphere.2022.133932
    [3] BAYABILI H K,TESHOME F T,LI Y C.Emerging contaminants in soil and water[J].Frontiers in Environmental Science,2022,10:873499. doi: 10.3389/fenvs.2022.873499
    [4] MA D,YI H,LAI C,et al.Critical review of advanced oxidation processes in organic wastewater treatment[J].Chemosphere,2021,275:130104. doi: 10.1016/j.chemosphere.2021.130104
    [5] LUO H,ZENG Y,ZHAO Y,et al.Effects of advanced oxidation processes on leachates and properties of microplastics[J].Journal of Hazardous Materials,2021,413:125342. doi: 10.1016/j.jhazmat.2021.125342
    [6] JIMENEZ S,ANDREOZZI M,MICO M M,et al.Produced water treatment by advanced oxidation processes[J].Science of the Total Environment,2019,666:12-21. doi: 10.1016/j.scitotenv.2019.02.128
    [7] AMOUR C,RODRIGUEZ C J,FERNANDS J L,et al.Winery wastewater treatment by sulphate radical based-advanced oxidation processes (SR-AOP):thermally vs UV-assisted persulphate activation[J].Process Safety and Environmental Protection,2019,122:94-101. doi: 10.1016/j.psep.2018.11.016
    [8] JAIN B,SINGH A K,KIM H,et al.Treatment of organic pollutants by homogeneous and heterogeneous Fenton reaction processes[J].Environmental Chemistry Letters,2018,16(3):947-967. doi: 10.1007/s10311-018-0738-3
    [9] 谢慧娜,嵇斌,李杰,等.响应面法优化Fenton预处理精细化工废水[J].环境科学研究,2019,32(8):1419-1426.

    XIE H N,JI B,LI J,et al.Optimization of Fenton process for pretreatment of refractory fine chemistrywastewater with response surface methodology[J].Research of Environmental Science,2019,32(8):1419-1426.
    [10] 肖超,张东国,张晓雪,等.抗坏血酸强化含水层介质Fenton降解PNP研究[J].环境科学研究,2021,34(12):2907-2916. doi: 10.13198/j.issn.1001-6929.2021.06.11

    XIAO C,ZHANG D G,ZHANG X X,et.al.Research on degradation of PNP with enhanced aquifer media Fenton system by ascorbic acid[J].Research of Environmental Science,2021,34(12):2907-2916. doi: 10.13198/j.issn.1001-6929.2021.06.11
    [11] PACHECO A M,PICOS B R,RODRIGUEZ N O M,et al.A critical review on paracetamol removal from different aqueous matrices by Fenton and Fenton-based processes,and their combined methods[J].Chemosphere,2022,303(1):134883.
    [12] JIANG Y,RAN J,MAO K,et al.Recent progress in Fenton/Fenton-like reactions for the removal of antibiotics in aqueous environments[J].Ecotoxicol and Environmental Safety,2022,236:113464. doi: 10.1016/j.ecoenv.2022.113464
    [13] 闫云涛,张柯,毛岩鹏,等.Fe2O3@SCe多相芬顿催化剂的制备及其降解放热性能[J].中国环境科学,2020,40(8):3375-3384. doi: 10.3969/j.issn.1000-6923.2020.08.015

    YAN Y T,ZHANG K,MAO Y P,et al.Preparation of Fe2O3@SCe heterogeneous fenton catalyst and its degradation exothermic performance[J].China Environmental Science,2020,40(8):3375-3384. doi: 10.3969/j.issn.1000-6923.2020.08.015
    [14] 冯勇,吴德礼,马鲁铭.黄铁矿催化类Fenton反应处理阳离子红X-GRL废水[J].中国环境科学,2012,32(6):1011-1017.

    FENG Y,WU D L,MA L M.Treatment of cationic red X-GRL wastewater by pyrite catalyzed Fenton-like reaction[J].China Environmental Science,2012,32(6):1011-1017.
    [15] CHEN Q,YAO Y,ZHAO Z,et al.Long term catalytic activity of pyrite in heterogeneous Fenton-like oxidation for the tertiary treatment of dyeing wastewater[J].Journal of Environmental Chemical Engineering,2021,9(4):105730. doi: 10.1016/j.jece.2021.105730
    [16] DIAO Z H,LIN Z Y,CHEN X Z,et al.Ultrasound-assisted heterogeneous activation of peroxymonosulphate by natural pyrite for 2,4-diclorophenol degradation in water:synergistic effects,pathway and mechanism[J].Chemical Engineering Journal,2020,389:123771. doi: 10.1016/j.cej.2019.123771
    [17] MORALES-GALLARDO M V,AYALA A M,PAL M,et al.Synthesis of pyrite FeS2 nanorods by simple hydrothermal method and its photocatalytic activity[J].Chemical Physics Letters,2016,660:93-98. doi: 10.1016/j.cplett.2016.07.046
    [18] WU D,CHEN Y,ZHANG Y,et al.Ferric iron enhanced chloramphenicol oxidation in pyrite (FeS2) induced Fenton-like reactions[J].Separation and Purification Technology,2015,154:60-67. doi: 10.1016/j.seppur.2015.09.016
    [19] SONG B,ZENG Z,ALMATREFI E,et al.Pyrite-mediated advanced oxidation processes:applications,mechanisms,and enhancing strategies[J].Water Research,2022,211:118048. doi: 10.1016/j.watres.2022.118048
    [20] XU Y,GUO X,ZHA F,et al.Efficient photocatalytic removal of orangeⅡ by a Mn3O4-FeS2/Fe2O3 heterogeneous catalyst[J].Journal of Environmental Management,2020,253:109695. doi: 10.1016/j.jenvman.2019.109695
    [21] JING Z X,ZHAO Q,ZHENG D,et al.Nickel-doped pyrrhotite iron sulfide nanosheets as a highly efficient electrocatalyst for water splitting[J].Journal of Materials Chemistry A,2020,8(39):20323-20330. doi: 10.1039/D0TA07624D
    [22] YI Q,JI J,SHEN B,et al.Singlet oxygen triggered by superoxide radicals in a molybdenum cocatalytic Fenton reaction with enhanced REDOX activity in the Environment[J].Environmental Science & Technology,2019,53(16):9725-9733.
    [23] 李明礼,谭凤训,罗从伟,等.钼助催化Fenton法降解罗丹明B的效能研究[J].工业水处理,2022,42(2):143-149.

    LING M L,TANG F X,LUO C W,et al.Degradation of Rhodamine B from water by molybdenum-assisted Fenton reaction[J].Industrial Water Treatment,2022,42(2):143-149.
    [24] GUO Q,ZHU W,YANG D,et al.A green solar photo-Fenton process for the degradation of carbamazepine using natural pyrite and organic acid with in-situ generated H2O2[J].Science of the Total Environment,2021,784:147187. doi: 10.1016/j.scitotenv.2021.147187
    [25] WANG D Y,GONG M,CHOU H L,et al.Highly active and stable hybrid catalyst of cobalt-doped FeS2 nanosheets-carbon nanotubes for hydrogen evolution reaction[J].Journal of the American Chemical Society,2015,137(4):1587-1592. doi: 10.1021/ja511572q
    [26] YU F,WANG Y,MA H,et al.Hydrothermal synthesis of FeS2 as a highly efficient heterogeneous electro-Fenton catalyst to degrade diclofenac via molecular oxygen effects for Fe(Ⅱ)/Fe(Ⅲ) cycle[J].Separation and Purification Technology,2020,248:117022. doi: 10.1016/j.seppur.2020.117022
    [27] BRAVO S M,ROMERO G A,RAMIREZ J,et al.Quantification of the sulfidation extent of Mo in CoMo HDS catalyst through XPS[J].Applied Surface Science,2019,493:587-592. doi: 10.1016/j.apsusc.2019.07.012
    [28] 王致远,刘富强,沈忱思,等.穿透式碳纳米管电极的制备及其高效降解水中抗生素的性能和机理[J].环境科学研究,2021,34(12):2811-2819.

    WANG Z Y,LIU F Q,SHEN C S,et al.Efficient degradation of antibiotics by flow-through electro-fenton system based on modified carbon nanotubes electrode:performance and mechanism[J].Research of Environmental Sciences,2021,34(12):2811-2819.
    [29] 韩金栋,蒋进元,李君超,等.纳米Fe/Co催化降解土霉素效果及影响因素研究[J].环境科学研究,2020,33(10):2335-2341.

    HAN J D,JIANG J Y,LI J C,et al.Oxidative degradation of oxytetracycline using nano Fe/Co catalyst and H2O2 under Fenton conditions[J].Research of Environmental Sciences,2020,33(10):2335-2341.
    [30] 曾婧.非均相催化剂失活机理分析[J].炼油与化工,2022,33(3):8-12.

    ZENG J.Mechanism analysis of inactivation of heterogeneous catalyst[J].Refining and Chemical Industry,2022,33(3):8-12.
    [31] LEE J,VON G U,KIM J H.Persulfate-based advanced oxidation:critical assessment of opportunities and roadblocks[J].Environmental Science & Technology,2020,54(6):3064-3081.
    [32] ZHU S,LI X,KANG J,et al.Persulfate activation on crystallographic manganese oxides:mechanism of singlet oxygen evolution for nonradical selective degradation of aqueous contaminants[J].Environmental Science & Technology,2019,53(1):307-315.
    [33] CAI Y,FAN J,LIU Z.Enhanced degradation of tetracycline over FeS-based Fenton-like process:autocatalytic decomposition of H2O2 and reduction of Fe(Ⅲ)[J].Journal of Hazardous Materials,2022,436:129092. doi: 10.1016/j.jhazmat.2022.129092
    [34] 陈撰,嵇家辉,冉茂希,等.无机助催化(类)芬顿反应降解有机污染物的研究进展[J].环境科学研究,2021,34(12):2787-2797. doi: 10.13198/j.issn.1001-6929.2021.09.18

    CHENG Z,JI J H,RAN M X,et al.Research progress in degradation of organic pollutants by inorganic co-catalytic Fenton and Fenton-like reactions[J].Research of Environmental Sciences,2021,34(12):2787-2797. doi: 10.13198/j.issn.1001-6929.2021.09.18
  • 加载中
图(14)
计量
  • 文章访问数:  108
  • HTML全文浏览量:  29
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-04
  • 修回日期:  2022-12-18

目录

    /

    返回文章
    返回