留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2018—2021年京津冀及周边地区“2+26”城市PM2.5与O3污染特征及气象影响

荆琦 盛立芳 张玮航 安霞东

荆琦, 盛立芳, 张玮航, 安霞东. 2018—2021年京津冀及周边地区“2+26”城市PM2.5与O3污染特征及气象影响[J]. 环境科学研究, 2023, 36(5): 875-886. doi: 10.13198/j.issn.1001-6929.2023.02.03
引用本文: 荆琦, 盛立芳, 张玮航, 安霞东. 2018—2021年京津冀及周边地区“2+26”城市PM2.5与O3污染特征及气象影响[J]. 环境科学研究, 2023, 36(5): 875-886. doi: 10.13198/j.issn.1001-6929.2023.02.03
JING Qi, SHENG Lifang, ZHANG Weihang, AN Xiadong. Characteristics of PM2.5 and O3 Pollution and Related Meteorological Impacts in ‘2+26’ Cities of Beijing-Tianjin-Hebei and Its Surrounding Areas from 2018 to 2021[J]. Research of Environmental Sciences, 2023, 36(5): 875-886. doi: 10.13198/j.issn.1001-6929.2023.02.03
Citation: JING Qi, SHENG Lifang, ZHANG Weihang, AN Xiadong. Characteristics of PM2.5 and O3 Pollution and Related Meteorological Impacts in ‘2+26’ Cities of Beijing-Tianjin-Hebei and Its Surrounding Areas from 2018 to 2021[J]. Research of Environmental Sciences, 2023, 36(5): 875-886. doi: 10.13198/j.issn.1001-6929.2023.02.03

2018—2021年京津冀及周边地区“2+26”城市PM2.5与O3污染特征及气象影响

doi: 10.13198/j.issn.1001-6929.2023.02.03
基金项目: 国家自然科学基金项目(No.42275191)
详细信息
    作者简介:

    荆琦(2000-),女,黑龙江绥化人,jingqi@stu.ouc.edu.cn

    通讯作者:

    盛立芳(1966-),女,山东招远人,教授,博士,博导,主要从事大气环境与天气和气候相互作用研究,shenglf@ouc.edu.cn

  • 中图分类号: X51

Characteristics of PM2.5 and O3 Pollution and Related Meteorological Impacts in ‘2+26’ Cities of Beijing-Tianjin-Hebei and Its Surrounding Areas from 2018 to 2021

Funds: National Natural Science Foundation of China (No.42275191)
  • 摘要: 为了解《打赢蓝天保卫战三年行动计划》期间(2018—2020年)以及之后(2021年)我国重点污染区域空气质量情况,并区分排放源控制与气象条件的贡献,本文利用逐小时监测的PM2.5、O3浓度以及气象要素数据,研究了2018—2021年京津冀及周边地区“2+26”城市PM2.5与O3污染特征,结合KZ (Kolmogorove Zurbenko)滤波方法定量分析了排放源与气象条件对PM2.5与O3浓度长期趋势的贡献. 结果表明:①2018—2021年“2+26”城市PM2.5浓度年均值与O3-8 h-90th浓度(O3日最大8 h平均浓度的第90百分位数)均呈逐年下降趋势. 2018—2021年PM2.5浓度年均值分别为60、57、51和45 μg/m3,河北省南部、河南省与山东省南部PM2.5浓度年均值均较高;O3-8 h-90th浓度分别为198、195、179和171 μg/m3,2018年保定市、石家庄市、聊城市与晋城市的O3-8 h-90th浓度(>210 μg/m3)均较高,而2021年太原市O3-8 h-90th浓度(192 μg/m3)较高. ②PM2.5与O3-8 h浓度(O3日最大8 h平均浓度)的长期分量在大部分城市受气象条件影响较为明显. 受气象条件影响的PM2.5浓度长期分量在2018—2020年无明显趋势,在2021年呈下降趋势;受排放源影响的PM2.5浓度长期分量在2018—2020年呈下降趋势,在2021年无明显趋势. 受气象条件影响的O3-8 h浓度长期分量在2018—2020年呈下降趋势,在2021年呈上升趋势;受排放源影响的O3-8 h浓度长期分量在2018年呈下降趋势,在2019—2021年无明显趋势. ③11个气象因子中,温度和相对湿度对PM2.5与O3-8 h浓度变化的影响较大,当温度与相对湿度均比前一天升高时,更有利于PM2.5与O3-8 h浓度的同时升高. 研究显示,“2+26”城市PM2.5与O3污染受气象条件影响显著,温度与相对湿度的变化对判定PM2.5与O3-8 h浓度同时升高的现象有一定积极意义.

     

  • 图  1  “2+26”城市空气质量监测站点与气象监测站点分布

    Figure  1.  Spatial distribution of air quality monitoring sites and meteorological monitoring sites in ‘2+26’ cities

    图  2  2018—2021年“2+26”城市PM2.5浓度与O3-8 h-90th浓度的年际变化

    Figure  2.  Inter-annual variation of PM2.5 and O3-8 h-90th concentrations in ‘2+26’ cities from 2018 to 2021

    图  3  2018—2021年“2+26”城市PM2.5浓度及其相对变化

    注:图a、b中三角形区域包含了河北省南部、河南省与山东省南部,该区域污染比较严重. 图c中斜线将“2+26”城市分为区域西北部与东南部,2个区域PM2.5浓度下降率不同.

    Figure  3.  The concentration and its relative variation of PM2.5 in ‘2+26’ cities from 2018 to 2021

    图  4  2018—2021年“2+26”城市O3-8 h浓度及其相对变化

    Figure  4.  The concentration and its relative variation of O3-8 h in ‘2+26’ cities from 2018 to 2021

    图  5  2018—2021年“2+26”城市PM2.5与O3-8 h浓度各分量的方差贡献率

    Figure  5.  Variance contribution of each component to PM2.5 and O3-8 h concentrations in ‘2+26’ cities from 2018 to 2021

    图  6  受排放源与气象条件影响的PM2.5与O3-8 h浓度长期分量的年变化趋势

    Figure  6.  Long-term annual variation trend of PM2.5 and O3-8 h concentrations influenced by emission sources and meteorology factors

    图  7  排放源与气象条件对PM2.5与O3-8 h浓度长期分量趋势的影响

    Figure  7.  Influence of emission sources and meteorological factors on long-term trend of PM2.5 and O3-8 h concentrations

    图  8  2018—2021年“2+26”城市未达到世界卫生组织第一阶段过渡目标与第二阶段过渡目标的PM2.5与O3复合污染日数

    Figure  8.  The number of combined PM2.5 and O3 pollution days failing to the first interim target and the second interim target in ‘2+26’ cities from 2018 to 2021

    表  1  2018—2021年“2+26”城市气象条件对PM2.5与O3-8 h浓度的相对贡献率

    Table  1.   Relative contribution of meteorological factors to PM2.5 and O3-8 h in ‘2+26’ cities from 2018 to 2021

    城市气象条件的相对贡献率/%城市气象条件的相对贡献率/%城市气象条件的相对贡献率/%
    PM2.5浓度O3-8 h浓度PM2.5浓度O3-8 h浓度PM2.5浓度O3-8 h浓度
    北京市6563太原市62228菏泽市5180
    天津市5651阳泉市8164郑州市42184
    石家庄市10391长治市6568开封市4986
    唐山市6263晋城市9188安阳市5495
    邯郸市6466济南市1253鹤壁市8163
    保定市7473淄博市1765新乡市3467
    沧州市3158济宁市−1 2991)94焦作市5391
    邢台市6077德州市2544濮阳市6549
    廊坊市52104聊城市6187
    衡水市5273滨州市2354
    注:1)代表未通过0.05的显著性检验,其他均通过了0.05的显著性检验.
    下载: 导出CSV

    表  2  2018—2021年“2+26”城市PM2.5与O3-8 h浓度变化关系类型的比例

    Table  2.   Proportion of the relationship types between PM2.5 and O3-8 h concentrations in ‘2+26’ cities from 2018 to 2021

    城市占比/%城市占比/%
    B型P型O型N型B型P型O型N型
    北京市27.628.322.821.3济南市31.022.420.526.1
    天津市28.326.021.324.4淄博市31.020.120.828.1
    石家庄市27.927.322.022.8济宁市31.221.220.327.3
    唐山市28.026.623.821.6德州市31.822.418.627.2
    邯郸市28.824.223.323.8聊城市32.822.418.925.9
    保定市28.526.622.422.5滨州市31.620.919.927.6
    沧州市29.722.922.325.1菏泽市31.721.420.126.8
    邢台市27.226.822.423.6郑州市27.624.923.324.3
    廊坊市27.526.024.222.4开封市30.522.721.325.4
    衡水市31.522.621.324.5安阳市28.823.923.124.1
    太原市28.725.622.123.6鹤壁市28.124.722.424.8
    阳泉市29.423.921.725.0新乡市28.323.921.726.0
    长治市27.625.224.422.8焦作市26.125.623.824.5
    晋城市31.422.019.627.1濮阳市28.523.022.825.7
    下载: 导出CSV

    表  3  2018—2021年PM2.5与O3-8 h浓度变化关系类型的逐月天数

    Table  3.   Days of the relationship types between PM2.5 and O3-8 h concentrations by month in ‘2+26’ cities from 2018 to 2021

    类型天数/d
    1月2月3月4月5月6月7月8月9月10月11月12月
    B型243037403837373738402720
    P型413027192221242221263742
    O型332728242622232119212532
    N型192427303234353733292419
    下载: 导出CSV

    表  4  气象耦合类型中B型的占比

    Table  4.   Proportions of type B under different meteorological coupling types

    k气象因子当日值与前1天的差值样本量/个样本量占比/%B型占比/%
    ΔTΔRHΔV85$ \Delta \text{SSRD} $$ \Delta \text{BLH} $
    1+20 5145342
    118 1254715
    2++8 0332147
    2+12 4813238
    2++11 5343046
    2++11 4483044
    3+++3 027855
    3+++4 2181154
    3+++3 620950
    4++++1 574458
    4++++1 536458
      注:k代表选取的气象因子数;Δ代表气象因子当日值与前1天的差值,+代表差值为正值,−代表差值为零或负值.
    下载: 导出CSV
  • [1] ZHAO S P,YIN D Y,YU Y,et al.PM2.5 and O3 pollution during 2015-2019 over 367 Chinese cities:spatiotemporal variations,meteorological and topographical impacts[J].Environmental Pollution,2020,264:114694. doi: 10.1016/j.envpol.2020.114694
    [2] QU L L,LIU S J,MA L L,et al.Evaluating the meteorological normalized PM2.5 trend (2014-2019) in the ‘2+26’ region of China using an ensemble learning technique[J].Environmental Pollution,2020,266:115346. doi: 10.1016/j.envpol.2020.115346
    [3] ZHANG Z Z,WANG W X,CHENG M M,et al.The contribution of residential coal combustion to PM2.5 pollution over China's Beijing-Tianjin-Hebei Region in winter[J].Atmospheric Environment,2017,159:147-161. doi: 10.1016/j.atmosenv.2017.03.054
    [4] LONG X,TIE X X,CAO J J,et al.Impact of crop field burning and mountains on heavy haze in the North China Plain:a case study[J].Atmospheric Chemistry and Physics,2016,16(15):9675-9691. doi: 10.5194/acp-16-9675-2016
    [5] WU G X,TIAN W L,ZHANG L,et al.The Chinese Spring Festival impact on air quality in China:a critical review[J].International Journal of Environmental Research and Public Health,2022,19(15):9074. doi: 10.3390/ijerph19159074
    [6] 孙峰,姚欢,刘保献,等.2013—2019年京津冀及周边地区PM2.5重污染特征[J].中国环境监测,2021,37(4):46-53.

    SUN F,YAO H,LIU B X,et al.Characteristics of PM2.5 heavy pollution in Beijing-Tianjin-Hebei and surrounding areas from 2013 to 2019[J].Environmental Monitoring in China,2021,37(4):46-53.
    [7] 井元元,李宏宇,张婧,等.1961—2017年华北区域大气自净能力变化特征及其影响因素分析[J].热带气象学报,2021,37(2):233-244.

    JING Y Y,LI H Y,ZHANG J,et al.Analysis of characteristics and influencing factors of atmospheric self-purification capacity in North China during 1961-2017[J].Journal of Tropical Meteorology,2021,37(2):233-244.
    [8] JIN X P,CAI X H,YU M Y,et al.Diagnostic analysis of wintertime PM2.5 pollution in the North China Plain:the impacts of regional transport and atmospheric boundary layer variation[J].Atmospheric Environment,2020,224:117346. doi: 10.1016/j.atmosenv.2020.117346
    [9] ZHANG W H,LI W S,AN X D,et al.Numerical study of the amplification effects of cold-front passage on air pollution over the North China Plain[J].Science of the Total Environment,2022,833:155231. doi: 10.1016/j.scitotenv.2022.155231
    [10] DANG R J,LIAO H.Severe winter haze days in the Beijing-Tianjin-Hebei Region from 1985 to 2017 and the roles of anthropogenic emissions and meteorology[J].Atmospheric Chemistry and Physics,2019,19(16):10801-10816. doi: 10.5194/acp-19-10801-2019
    [11] ZHANG X Y,XU X D,DING Y H,et al.The impact of meteorological changes from 2013 to 2017 on PM2.5 mass reduction in key regions in China[J].Science China:Earth Sciencess,2019,62(12):1885-1902. doi: 10.1007/s11430-019-9343-3
    [12] 李慧,王淑兰,张文杰,等.京津冀及周边地区“2+26”城市空气质量特征及其影响因素[J].环境科学研究,2021,34(1):172-184. doi: 10.13198/j.issn.1001-6929.2020.12.26

    LI H,WANG S L,ZHANG W J,et al.Characteristics and influencing factors of urban air quality in Beijing-Tianjin-Hebei and its surrounding areas (‘2+26’ cities)[J].Research of Environmental Sciences,2021,34(1):172-184. doi: 10.13198/j.issn.1001-6929.2020.12.26
    [13] 姜华,高健,李红,等.我国大气污染协同防控理论框架初探[J].环境科学研究,2022,35(3):601-610.

    JIANG H,GAO J,LI H,et al.Preliminary research on theoretical framework of cooperative control of air pollution in China[J].Research of Environmental Sciences,2022,35(3):601-610.
    [14] WEI J,LI Z Q,LI K,et al.Full-coverage mapping and spatiotemporal variations of ground-level ozone (O3) pollution from 2013 to 2020 across China[J].Remote Sensing of Environment,2022,270:112775. doi: 10.1016/j.rse.2021.112775
    [15] LI C L,LIU Y F,CHENG B F,et al.A comprehensive investigation on volatile organic compounds (VOCs) in 2018 in Beijing,China:characteristics,sources and behaviours in response to O3 formation[J].Science of the Total Environment,2022,806:150247. doi: 10.1016/j.scitotenv.2021.150247
    [16] DANG R J,LIAO H,FU Y.Quantifying the anthropogenic and meteorological influences on summertime surface ozone in China over 2012-2017[J].Science of the Total Environment,2021,754:142394. doi: 10.1016/j.scitotenv.2020.142394
    [17] GAO J,ZHANG J,LI H,et al.Comparative study of volatile organic compounds in ambient air using observed mixing ratios and initial mixing ratios taking chemical loss into account:a case study in a typical urban area in Beijing[J].Science of the Total Environment,2018,628/629:791-804. doi: 10.1016/j.scitotenv.2018.01.175
    [18] MA P F,MAO H Q,ZHANG J H,et al.Satellite monitoring of stratospheric ozone intrusion exceptional events:a typical case of China in 2019[J].Atmospheric Pollution Research,2022,13(2):101297. doi: 10.1016/j.apr.2021.101297
    [19] ZHANG Y J,ZHAO Y C,LI J,et al.Modeling ozone source apportionment and performing sensitivity analysis in summer on the North China plain[J].Atmosphere,2020,11(9):992. doi: 10.3390/atmos11090992
    [20] 花丛,江琪,迟茜元,等.我国中东部地区2015—2020年夏半年PM2.5和臭氧复合污染气象特征分析[J].环境科学研究,2022,35(3):650-658.

    HUA C,JIANG Q,CHI X Y,et al.Meteorological characteristics of PM2.5-O3 air combined pollution in central and eastern China in the summer half years of 2015-2020[J].Research of Environmental Sciences,2022,35(3):650-658.
    [21] GONG S L,LIU Y L,HE J J,et al.Multi-scale analysis of the impacts of meteorology and emissions on PM2.5 and O3 trends at various regions in China from 2013 to 2020 1:synoptic circulation patterns and pollution[J].Science of the Total Environment,2022,815:152770. doi: 10.1016/j.scitotenv.2021.152770
    [22] ZHOU L H,ZHANG J,LU T W,et al.Pollution patterns and their meteorological analysis all over China[J].Atmospheric Environment,2021,246:118108. doi: 10.1016/j.atmosenv.2020.118108
    [23] YANG Z,YANG J,LI M M,et al.Nonlinear and lagged meteorological effects on daily levels of ambient PM2.5 and O3:evidence from 284 Chinese cities[J].Journal of Cleaner Production,2021,278:123931. doi: 10.1016/j.jclepro.2020.123931
    [24] GONG S L,ZHANG L,LIU C,et al.Multi-scale analysis of the impacts of meteorology and emissions on PM2.5 and O3 trends at various regions in China from 2013 to 2020 2.key weather elements and emissions[J].Science of the Total Environment,2022,824:153847. doi: 10.1016/j.scitotenv.2022.153847
    [25] DU H Y,LI J,WANG Z F,et al.Assessment of the effect of meteorological and emission variations on winter PM2.5 over the North China Plain in the three-year action plan against air pollution in 2018-2020[J].Atmospheric Research,2022,280:106395. doi: 10.1016/j.atmosres.2022.106395
    [26] WANG P F,GUO H,HU J L,et al.Responses of PM2.5 and O3 concentrations to changes of meteorology and emissions in China[J].Science of the Total Environment,2019,662:297-306. doi: 10.1016/j.scitotenv.2019.01.227
    [27] CHENG N L,CHENG B F,LI S S,et al.Effects of meteorology and emission reduction measures on air pollution in Beijing during heating seasons[J].Atmospheric Pollution Research,2019,10(3):971-979. doi: 10.1016/j.apr.2019.01.005
    [28] ESKRIDGE R E,KU J Y,RAO S T,et al.Separating different scales of motion in time series of meteorological variables[J].Bulletin of the American Meteorological Society,1997,78(7):1473-1483. doi: 10.1175/1520-0477(1997)078<1473:SDSOMI>2.0.CO;2
    [29] FANG C S,QIU J X,LI J,et al.Analysis of the meteorological impact on PM2.5 pollution in Changchun based on KZ filter and WRF-CMAQ[J].Atmospheric Environment,2022,271:118924. doi: 10.1016/j.atmosenv.2021.118924
    [30] GAO S,BAI Z P,LIANG S,et al.Simulation of surface ozone over Hebei Province,China using Kolmogorov-Zurbenko and artificial neural network (KZ-ANN) combined model[J].Atmospheric Environment,2021,261:118599. doi: 10.1016/j.atmosenv.2021.118599
    [31] RAO S T,ZURBENKO I G.Detecting and tracking changes in ozone air quality[J].Journal of the Air & Waste Management Association,1994,44(9):1089-1092.
    [32] SUN X Y,ZHAO T L,BAI Y Q,et al.Meteorology impact on PM2.5 change over a receptor region in the regional transport of air pollutants:observational study of recent emission reductions in Central China[J].Atmospheric Chemistry and Physics,2022,22(5):3579-3593. doi: 10.5194/acp-22-3579-2022
    [33] WISE E K,COMRIE A C.Extending the Kolmogorov-Zurbenko filter:application to ozone,particulate matter,and meteorological trends[J].Journal of the Air & Waste Management Association,2005,55(8):1208-1216.
    [34] 张运江,雷若媛,崔世杰,等.2015—2020年我国主要城市PM2.5和O3污染时空变化趋势和影响因素[J].科学通报,2022,67(18):2029-2042.

    ZHANG Y J,LEI R Y,CUI S J,et al.Spatiotemporal trends and impact factors of PM2.5 and O3 pollution in major cities in China during 2015-2020[J].Chinese Science Bulletin,2022,67(18):2029-2042.
    [35] MILANCHUS M L,RAO S T,ZURBENKO I G.Evaluating the effectiveness of ozone management efforts in the presence of meteorological variability[J].Journal of the Air & Waste Management Association,1998,48(3):201-215.
    [36] 彭玏.京津冀城市大气污染传输通道区2000—2015年PM2.5时空格局研究[D].北京:北京林业大学,2019:8-10.
    [37] WENG X,FORSTER G L,NOWACK P.A machine learning approach to quantify meteorological drivers of ozone pollution in China from 2015 to 2019[J].Atmospheric Chemistry and Physics,2022,22(12):8385-8402. doi: 10.5194/acp-22-8385-2022
    [38] GU R D,LI C F,LI D D,et al.The impact of rationalization and upgrading of industrial structure on carbon emissions in the Beijing-Tianjin-Hebei urban agglomeration[J].International Journal of Environmental Research and Public Health,2022,19(13):7997. doi: 10.3390/ijerph19137997
    [39] CHEN Y C,LEI T C,YAO S,et al.PM2.5 prediction model based on combinational Hammerstein recurrent neural networks[J].Mathematics,2020,8(12):2178. doi: 10.3390/math8122178
    [40] YU P,NIAN D,QIAO P J,et al.Memory behaviors of air pollutions and their spatial patterns in China[J].Frontiers in Physics,2022,10:875357. doi: 10.3389/fphy.2022.875357
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  542
  • HTML全文浏览量:  85
  • PDF下载量:  289
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-17
  • 修回日期:  2023-02-07

目录

    /

    返回文章
    返回