留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

典型炼化废水微生物功能结构与主要致毒物质响应关系研究

宋佳宇 张婷婷 李立君 李丹丹 李兴春 李昀照

宋佳宇, 张婷婷, 李立君, 李丹丹, 李兴春, 李昀照. 典型炼化废水微生物功能结构与主要致毒物质响应关系研究[J]. 环境科学研究, 2023, 36(5): 943-953. doi: 10.13198/j.issn.1001-6929.2023.02.04
引用本文: 宋佳宇, 张婷婷, 李立君, 李丹丹, 李兴春, 李昀照. 典型炼化废水微生物功能结构与主要致毒物质响应关系研究[J]. 环境科学研究, 2023, 36(5): 943-953. doi: 10.13198/j.issn.1001-6929.2023.02.04
SONG Jiayu, ZHANG Tingting, LI Lijun, LI Dandan, LI Xingchun, LI Yunzhao. Relationship between Microbial Diversity and Main Toxic Substances in Typical Refinery Wastewater[J]. Research of Environmental Sciences, 2023, 36(5): 943-953. doi: 10.13198/j.issn.1001-6929.2023.02.04
Citation: SONG Jiayu, ZHANG Tingting, LI Lijun, LI Dandan, LI Xingchun, LI Yunzhao. Relationship between Microbial Diversity and Main Toxic Substances in Typical Refinery Wastewater[J]. Research of Environmental Sciences, 2023, 36(5): 943-953. doi: 10.13198/j.issn.1001-6929.2023.02.04

典型炼化废水微生物功能结构与主要致毒物质响应关系研究

doi: 10.13198/j.issn.1001-6929.2023.02.04
基金项目: 中国石油天然气集团有限公司科学与技术开发项目(No.2021DQ03-A4)
详细信息
    作者简介:

    宋佳宇(1985-),女,天津人,高级工程师,硕士,主要从事石油污染生物修复研究,songjiayu@cnpc.com.cn

  • 中图分类号: X172

Relationship between Microbial Diversity and Main Toxic Substances in Typical Refinery Wastewater

Funds: Scientific Research and Technology Development Program of China National Petroleum Corporation (No.2021DQ03-A4)
  • 摘要: 为探明典型炼化废水处理系统(简称“系统”)生物毒性削减效果、主要致毒物质类别及微生物功能响应关系,以费氏弧菌和鼠伤寒沙门氏菌为受试生物,测试系统沿程生物急性毒性及遗传毒性,并结合毒性鉴别评价方法甄别系统主要致毒物质,同时利用高通量测序技术探究系统微生物功能结构与主要致毒物质响应关系. 结果表明:①系统沿程生物毒性总体呈下降趋势,生化处理单元进水为急性毒性微毒、遗传毒性阳性. 其中,炼油废水急性毒性总削减率为86.514%,遗传毒性总削减率为96.221%;化工废水急性毒性总削减率为53.281%,遗传毒性总削减率为62.273%. ②通过毒性鉴别评价方法(toxicity identification evaluation, TIE)结果推断,炼油废水主要致毒物质可能为阳离子金属及非极性有机物,化工废水主要致毒物质可能为阳离子金属. ③CCA分析表明,NH3-N浓度(r=0.819,p=0.001)、Cr浓度(r=0.777,p=0.002)、TPH (total petroleum hydrocarbon,总石油烃)浓度(r=0.752,p=0.002)与生化处理前微生物群落结构均呈显著正相关,与生化处理后微生物群落结构均呈显著负相关. ④生化处理阶段微生物功能发生极显著(p≤0.01)变化. FAPROTAX数据库预测可知,化学异养、好氧化学异养、芳香化合物降解、亚硝酸盐呼吸、硝酸盐还原、硝酸盐呼吸、氮气呼吸7种与碳、氮循环相关的微生物功能丰度均较高. 研究显示:系统沿程生物毒性虽呈下降趋势,但生化处理单元进水仍为急性毒性微毒、遗传毒性阳性;毒性表征推断炼油废水主要致毒物质可能为阳离子金属及非极性有机物,化工废水主要致毒物质可能为阳离子金属;生化处理单元中与碳、氮循环相关的微生物功能丰度较高,表明生化处理单元存在潜在毒性冲击风险.

     

  • 图  1  典型炼化废水处理系统主要处理单元及采样点设置

    Figure  1.  The main processing units of typical refinery wastewater and the setting of water sampling points

    图  2  TIE Phase I试验流程示意

    注:pH0为原水pH;该试验中pH的调节均采用NaOH (0.1 mol/L)和HCl (0.1 mol/L).

    Figure  2.  Experimental flow chart of TIE Phase I

    图  3  典型炼化废水处理系统各主要处理阶段生物毒性的变化趋势

    Figure  3.  Biotoxicity trends in main stages of the typical refinery wastewater treatment systems

    图  4  典型炼化废水各单元出水的毒性鉴别评价

    Figure  4.  Toxicity identification evaluation of effluent from each unit of typical refinery wastewater

    图  5  筛选后环境因子与典型炼化废水微生物群落CCA分析(属水平)

    注:Before为典型炼化废水生化处理前水样,After为典型炼化废水生化处理后水样.

    Figure  5.  CCA of selected environmental factors and microbial communities in typical refinery wastewater (at the genus level)

    图  6  典型炼化废水生化处理前后疑似致毒环境因子与优势菌相关性热图(属水平)

    注:*表示0.01≤p≤0.05,**表示0.001≤P≤0.01,***表示p≤0.001.

    Figure  6.  Heatmap of correlation between suspected toxic environmental factors and dominant bacteria before and after biochemical treatment of a typical refinery wastewater (at the genus level)

    图  7  典型炼化废水生化处理阶段微生物功能丰度的比对

    Figure  7.  Comparison of microbial functional abundance in the biochemical treatment stage in typical refinery wastewater

    表  1  典型炼化废水各处理阶段出水的常规理化指标

    Table  1.   Physicochemical parameters of the typical refinery wastewater from different units

    进水类型处理阶段pH浓度/(mg/L)
    COD硫化物SSNH3-NTPH
    炼油废水进水7.19±0.15186.32±5.9635.24±3.3328.75±1.5815.74±0.15133.27±8.28
    物理单元出水7.44±0.22202.76±10.2410.56±1.0520.17±2.7521.38±2.2485.15±8.01
    生化单元出水7.50±0.3539.33±3.888.37±0.675.87±0.661.72±0.5720.33±2.93
    深度处理出水7.17±0.5233.24±5.270.35±0.0453.22±0.150.15±0.0330.35±0.019
    化工废水进水7.23±0.65136.57±15.2915.28±2.6622.74±2.7814.01±1.6635.99±7.45
    生化单元出水7.52±0.2526.03±1.744.37±0.6418.26±1.392.37±0.6720.16±5.28
    深度处理出水7.19±0.3923.34±1.050.59±0.03712.15±1.070.24±0.0463.52±0.68
    注:《石油炼制工业污染物排放标准》(GB 31570—2015)中常规污染物理化指标排放限值分别为pH 6~9、COD浓度 60 mg/L、硫化物浓度1 mg/L、SS浓度70 mg/L、NH3-N浓度8 mg/L、TPH浓度5 mg/L.
    下载: 导出CSV

    表  2  工业废水生物毒性评价

    Table  2.   Biological toxicity evaluation of industrial wastewater

    项目毒性级别
    TUa<0.40无毒
    0.40<TUa<1.00微毒
    1.00<TUa<10.00中毒
    10.00<TUa<100.00高毒
    TUa>100.00剧毒
    下载: 导出CSV

    表  3  典型炼化废水各主要处理阶段生物毒性负荷削减率

    Table  3.   Reduction rate of biological toxicity load in main treatment stages of typical refinery wastewater

    进水来源主要处理阶段生物毒性负荷削减率/%
    急性毒性遗传毒性
    炼油废水物理处理阶段−4.26772.334
    生化处理阶段72.79253.281
    深度处理阶段52.46270.762
    总计86.51496.221
    化工废水生化处理阶段7.38244.597
    深度处理阶段28.18131.905
    总计21.86062.273
    下载: 导出CSV

    表  4  筛选后疑似致毒类环境因子的VIF值

    Table  4.   VIF values for suspected toxicogenic environmental factors after screening

    疑似致毒环境因子VIF值
    NH3-N4.597
    Cr2.937
    Ni1.368
    TPH3.088
    下载: 导出CSV

    表  5  典型炼化废水生化处理阶段微生物功能丰度对比T检验

    Table  5.   T-test of the functional abundance of microorganisms in the biochemical treatment stage of typical refinery wastewater

    样品编号个案数相关性显著性(p)
    炼油废水生化处理阶段进出水(BC)200.7030.01
    化工废水生化处理阶段进出水(EF)200.941<0.01
    下载: 导出CSV
  • [1] 生态环境部.中国生态环境状况公报:2020[R].北京:生态环境部,2021.
    [2] 张晶.常规生化处理对石化废水生物毒性及组分影响规律的研究[D].兰州:兰州大学,2012.
    [3] TEHRANI G M,SANY S B T,HASHIM R,et al.Predictive environmental impact assessment of total petroleum hydrocarbons in petrochemical wastewater effluent and surface sediment[J].Environmental Earth Sciences,2016,75(2):177. doi: 10.1007/s12665-015-4918-1
    [4] RAM A,ROKADE M A,et al.A preliminary estimate of total petroleum hydrocarbons in water and some commercially important fish species in the amba estuary,west coast of India[J].Bulletin of Environmental Contamination and Toxicology,2016,97(1):56-62. doi: 10.1007/s00128-016-1819-2
    [5] BOTALOVA O,SCHWARZBAUER J,AL SANDOUK N.Identification and chemical characterization of specific organic indicators in the effluents from chemical production sites[J].Water Research,2011,45(12):3653-3664. doi: 10.1016/j.watres.2011.04.012
    [6] 高晶,张肖,赵乐军,等.用SOS/umu试验评价降雨径流遗传毒性的变化[J].生态毒理学报,2018,13(2):106-111. doi: 10.7524/AJE.1673-5897.20171030001

    GAO J,ZHANG X,ZHAO L J,et al.The changes of genotoxicity in rainfall runoff based on SOS/umu test[J].Asian Journal of Ecotoxicology,2018,13(2):106-111. doi: 10.7524/AJE.1673-5897.20171030001
    [7] YU X,ZUO J E,TANG X Y,et al.Toxicity evaluation of pharmaceutical wastewaters using the Alga Scenedesmus obliquus and the bacterium Vibrio fischeri[J].Journal of Hazardous Materials,2014,266:68-74. doi: 10.1016/j.jhazmat.2013.12.012
    [8] PLAHUTA M,TIŠLER T,TOMAN M J,et al.Toxic and endocrine disrupting effects of wastewater treatment plant influents and effluents on a freshwater isopod Asellus aquaticus (Isopoda,Crustacea)[J].Chemosphere,2017,174:342-353. doi: 10.1016/j.chemosphere.2017.01.137
    [9] 宋佳宇,秦榕,杜显元,等.点源炼油废水处理系统微生物多样性及代谢功能研究[J].环境科学研究,2021,34(10):2389-2396. doi: 10.13198/j.issn.1001-6929.2021.05.23

    SONG J Y,QIN R,DU X Y,et al.Microbial diversity and metabolic function in point source wastewater treatment system of oil refinery[J].Research of Environmental Sciences,2021,34(10):2389-2396. doi: 10.13198/j.issn.1001-6929.2021.05.23
    [10] WHALE G F,HJORT M,Di PAOLO C,et al.Assessment of oil refinery wastewater and effluent integrating bioassays,mechanistic modelling and bioavailability evaluation[J].Chemosphere,2022,287:132146. doi: 10.1016/j.chemosphere.2021.132146
    [11] WANG Y H,SHI X Y,HUANG X X,et al.Linking microbial community composition to farming pattern in selenium-enriched region:potential role of microorganisms on Se geochemistry[J].Journal of Environmental Sciences,2022,112:269-279. doi: 10.1016/j.jes.2021.05.015
    [12] 王宏洋,孙宇巍,王旭,等.美国针对高氯酸盐环境风险的管控策略及对我国的启示[J].环境科学研究,2022,35(10):2396-2403.

    WANG H Y,SUN Y W,WANG X,et al.Strategy of environmental risk control for perchlorate in the United States and enlightenment for China[J].Research of Environmental Sciences,2022,35(10):2396-2403.
    [13] GESTO M,TINTOS A,RODRÍGUEZ-ILLAMOLA A,et al.Effects of naphthalene,β-naphthoflavone and benzo(a)pyrene on the diurnal and nocturnal indoleamine metabolism and melatonin content in the pineal organ of rainbow trout,Oncorhynchus mykiss[J].Aquatic Toxicology,2009,92(1):1-8. doi: 10.1016/j.aquatox.2008.12.008
    [14] 王立阳,李斌,李佳熹,等.沈阳市典型城市河流优先控制污染物筛选及生态环境风险评估[J].环境科学研究,2019,32(1):25-34. doi: 10.13198/j.issn.1001-6929.2018.09.02

    WANG L Y,LI B,LI J X,et al.Priority pollutants and their ecological risk in typically urbanized river of Shenyang[J].Research of Environmental Sciences,2019,32(1):25-34. doi: 10.13198/j.issn.1001-6929.2018.09.02
    [15] NORBERG-KING T J,I.M D,DURHAN E J,et al.Methods for aquatic toxicity identification evaluations.Phase 1 toxicity: characterization procedures[R].New York:US Environmental Protection Agency,1991.
    [16] DURHAN E,NORBERG-KING T,BURKHARD L P.Methods for aquatic toxicity identification evaluations.phase Ⅱ toxicity:identification procedures for samples exhibiting acute and chronic toxicity[R].New York:US Environmental Protection Agency,Office of Research and Development,Environmental Research Laboratory,1993.
    [17] MOUNT D I,NORBERG-KING T J.Methods for aquatic toxicity identification evaluations.phase Ⅲ toxicity:confirmation procedures for samples exhibiting acute and chronic toxicity[R].New York:US Environmental Protection Agency,1993.
    [18] 陈学勇,韦朝海.点源有机毒物污(废)水排放的生态风险管理技术分析[J].化工进展,2010,29(2):342-349. doi: 10.16085/j.issn.1000-6613.2010.02.030

    CHEN X Y,WEI C H.Ecological risk assessment technology for point sources of organic toxicants from industrial and municipal effluents[J].Chemical Industry and Engineering Progress,2010,29(2):342-349. doi: 10.16085/j.issn.1000-6613.2010.02.030
    [19] VARJANI S,JOSHI R,SRIVASTAVA V K,et al.Treatment of wastewater from petroleum industry:current practices and perspectives[J].Environmental Science and Pollution Research,2020,27(22):27172-27180. doi: 10.1007/s11356-019-04725-x
    [20] 乔宇,闫振飞,冯承莲,等.基于文献计量学的环境内分泌干扰物研究热点分析[J].环境科学研究,2022,35(2):424-434. doi: 10.13198/j.issn.1001-6929.2021.11.16

    QIAO Y,YAN Z F,FENG C L,et al.Research focus analysis of endocrine disrupting chemicals(EDCs) based on bibliometrics[J].Research of Environmental Sciences,2022,35(2):424-434. doi: 10.13198/j.issn.1001-6929.2021.11.16
    [21] 王业耀,姜明岑,李茜,等.流域水质预警体系研究与应用进展[J].环境科学研究,2019,32(7):1126-1133. doi: 10.13198/j.issn.1001-6929.2019.05.01

    WANG Y Y,JIANG M C,LI Q,et al.Advances in watershed water quality early-warning system[J].Research of Environmental Sciences,2019,32(7):1126-1133. doi: 10.13198/j.issn.1001-6929.2019.05.01
    [22] 吴慧君,宋权威,郑瑾,等.微生物降解石油烃的功能基因研究进展[J].微生物学通报,2020,47(10):3355-3368. doi: 10.13344/j.microbiol.china.200402

    WU H J,SONG Q W,ZHENG J,et al.Function genes in microorganisms capable of degrading petroleum hydrocarbon[J].Microbiology China,2020,47(10):3355-3368. doi: 10.13344/j.microbiol.china.200402
    [23] 罗景阳,张乐,张腾,等.不同工艺对污水处理效能及细菌代谢功能的影响[J].中国给水排水,2021,37(23):61-67.

    LUO J Y,ZHANG L,ZHANG T,et al.Effects of different processes on wastewater treatment efficiency and bacterial metabolic function[J].China Water & Wastewater,2021,37(23):61-67.
    [24] 刘灵婕,季民,王芬,等.反硝化深床滤柱深度脱氮效果及反硝化功能基因分析[J].化工进展,2018,37(12):4917-4923.

    LIU L J,JI M,WANG F,et al.Nitrogen removal performance of deep-bed denitrification filter and analysis of denitrifying genes[J].Chemical Industry and Engineering Progress,2018,37(12):4917-4923.
    [25] 言野,李娜,刘楠楠,等.利用改进的SOS/umu方法检测水处理过程中污染物的遗传毒性效应[J].生态毒理学报,2013,8(6):909-916. doi: 10.7524/AJE.1673-5897.20121017001

    YAN Y,LI N,LIU N N,et al.Application of modified SOS/umu test to determine genotoxicity of genotoxic chemicals and effluents from drinking water treatment process[J].Asian Journal of Ecotoxicology,2013,8(6):909-916. doi: 10.7524/AJE.1673-5897.20121017001
    [26] MILLER J H.Experiments in molecular genetics[M].New York:Cold Spring Harbor Laboratory,1972.
    [27] 国家环境保护总局,水和废水监测分析方法编委会编.水和废水监测分析方法[M].4版.北京:中国环境科学出版社,2002:211-213.
    [28] de FMATOS M,BOTTA C M R,FONSECA A L.Toxicity Identification Evaluation (Phase I) of water and sediment samples from a tropical reservoir contaminated with industrial and domestic effluents[J].Environmental Monitoring and Assessment,2014,186(11):7999-8006. doi: 10.1007/s10661-014-3982-4
    [29] ACIR I H,GUENTHER K.Endocrine-disrupting metabolites of alkylphenol ethoxylates:a critical review of analytical methods,environmental occurrences,toxicity,and regulation[J].Science of the Total Environment,2018,635:1530-1546. doi: 10.1016/j.scitotenv.2018.04.079
    [30] 李娜,骆坚平,饶凯锋,等.用SOS/Umu生物测试评价北方某自来水厂对遗传毒性物质的去除效果[J].环境工程学报,2007,1(11):10-16. doi: 10.3969/j.issn.1673-9108.2007.11.003

    LI N,LUO J P,RAO K F,et al.Assessment of the effects of removal genotoxicity for a waterworks located in the north of China by using SOS/Umu test[J].Chinese Journal of Environmental Engineering,2007,1(11):10-16. doi: 10.3969/j.issn.1673-9108.2007.11.003
    [31] 陈玲,翁景霞,刘苏,等.工业废水毒性评估与致毒物质鉴别技术进展[J].环境监控与预警,2018,10(3):1-8. doi: 10.3969/j.issn.1674-6732.2018.03.001

    CHEN L,WENG J X,LIU S,et al.Progress on toxicity assessment and toxicant identification technique for industrial wastewater[J].Environmental Monitoring and Forewarning,2018,10(3):1-8. doi: 10.3969/j.issn.1674-6732.2018.03.001
    [32] MALAKAHMAD A,HASANI A,EISAKHANI M,et al.Sequencing Batch Reactor (SBR) for the removal of Hg2+ and Cd2+ from synthetic petrochemical factory wastewater[J].Journal of Hazardous Materials,2011,191(1/2/3):118-125.
    [33] TORRES de LEMOS C,MILAN RÖDEL P,REGINA TERRA N,et al.River water genotoxicity evaluation using micronucleus assay in fish erythrocytes[J].Ecotoxicology and Environmental Safety,2007,66(3):391-401. doi: 10.1016/j.ecoenv.2006.01.004
    [34] 张瑛,曹迪,胡丽萍,等.某石化废水的综合毒性评价及其处理工艺对毒性的削减规律研究[J].生态毒理学报,2017,12(5):109-118. doi: 10.7524/AJE.1673-5897.20170212001

    ZHANG Y,CAO D,HU L P,et al.Comprehensive toxicity evaluation and the effect of the treatment process on toxicity reduction of a petrochemical wastewater[J].Asian Journal of Ecotoxicology,2017,12(5):109-118. doi: 10.7524/AJE.1673-5897.20170212001
    [35] 黄利,陈文艳,万玉山,等.制革废水和印染废水的综合毒性评估及鉴别[J].环境科学,2015,36(7):2604-2609. doi: 10.13227/j.hjkx.2015.07.037

    HUANG L,CHEN W Y,WAN Y S,et al.Comprehensive toxicity evaluation and toxicity identification used in tannery and textile wastewaters[J].Environmental Science,2015,36(7):2604-2609. doi: 10.13227/j.hjkx.2015.07.037
    [36] 王子健,骆坚平,查金苗.水体沉积物毒性鉴别与评价研究进展[J].环境污染与防治,2009,31(12):35-41. doi: 10.3969/j.issn.1001-3865.2009.12.023

    WANG Z J,LUO J P,ZHA J M.A review on progress of sediment toxicity identification and evaluation[J].Environmental Pollution & Control,2009,31(12):35-41. doi: 10.3969/j.issn.1001-3865.2009.12.023
    [37] 赵建亮,方怡向,应光国.工业废水毒性鉴定评价方法体系的建议及其应用示例[J].生态环境学报,2011,20(3):549-559. doi: 10.3969/j.issn.1674-5906.2011.03.028

    ZHAO J L,FANG Y X,YING G G.Toxicity identification and evaluation methodology proposed for various industrial effluents and its practical application[J].Ecology and Environmental Sciences,2011,20(3):549-559. doi: 10.3969/j.issn.1674-5906.2011.03.028
    [38] SULIASIH B A,OTHMAN M S,HENG L Y,et al.Toxicity identification evaluation of landfill leachate taking a multispecies approach[C].Southampton,UK:WIT Press,2010:311-322.
    [39] 马勇,黄燕,贾玉玲,等.发光细菌急性毒性测试方法的优化研究[J].环境污染与防治,2010,32(11):48-52. doi: 10.3969/j.issn.1001-3865.2010.11.012

    MA Y,HUANG Y,JIA Y L,et al.Improved acute toxicity test method for luminescent bacteria[J].Environmental Pollution & Control,2010,32(11):48-52. doi: 10.3969/j.issn.1001-3865.2010.11.012
    [40] 刘旦宇,荣宏伟.石化乙烯工业废水中关键毒性物质的鉴别[J].环境工程,2012,30(4):101-104. doi: 10.13205/j.hjgc.2012.04.031

    LIU D Y,RONG H W.Identification of the key toxicants in the petrochemical ethylene industrial wastewater[J].Environmental Engineering,2012,30(4):101-104. doi: 10.13205/j.hjgc.2012.04.031
    [41] KHARDENAVIS A A,KAPLEY A,PUROHIT H J.Simultaneous nitrification and denitrification by diverse Diaphorobacter sp.[J].Applied Microbiology and Biotechnology,2007,77(2):403-409. doi: 10.1007/s00253-007-1176-5
    [42] NOUHA K,KUMAR R S,TYAGI R D.Heavy metals removal from wastewater using extracellular polymeric substances produced by Cloacibacterium normanense in wastewater sludge supplemented with crude glycerol and study of extracellular polymeric substances extraction by different methods[J].Bioresource Technology,2016,212:120-129. doi: 10.1016/j.biortech.2016.04.021
    [43] LIU X R,DU M T,YANG J N,et al.Sulfite serving as a pretreatment method for alkaline fermentation to enhance short-chain fatty acid production from waste activated sludge[J].Chemical Engineering Journal,2020,385:123991. doi: 10.1016/j.cej.2019.123991
    [44] LI M Y,XU M M,SU A X,et al.Combined phenanthrene and copper pollution imposed a selective pressure on the rice root-associated microbiome[J].Frontiers in Microbiology,2022,13:888086. doi: 10.3389/fmicb.2022.888086
    [45] ETCHEBEHERE C,TIEDJE J.Presence of two different active nirS nitrite reductase genes in a denitrifying Thauera sp.from a high-nitrate-removal-rate reactor[J].Applied and Environmental Microbiology,2005,71(9):5642-5645. doi: 10.1128/AEM.71.9.5642-5645.2005
    [46] CHEN C M,MING J,YOZA B A,et al.Characterization of aerobic granular sludge used for the treatment of petroleum wastewater[J].Bioresource Technology,2019,271:353-359. doi: 10.1016/j.biortech.2018.09.132
    [47] LI A D,LI L G,ZHANG T.Exploring antibiotic resistance genes and metal resistance genes in plasmid metagenomes from wastewater treatment plants[J].Frontiers in Microbiology,2015,6:1025.
    [48] ZHU X Z,LEE L W,SONG G Q,et al.Deciphering mono/multivalent draw solute-induced microbial ecology and membrane fouling in anaerobic osmotic membrane bioreactor[J].Water Research,2022,209:117869. doi: 10.1016/j.watres.2021.117869
    [49] WU M,WANG H M,WANG W Q,et al.The impact of heavy rain event on groundwater microbial communities in Xikuangshan,Hunan Province,P.R.China[J].Journal of Hydrology,2021,595:125674. doi: 10.1016/j.jhydrol.2020.125674
    [50] QU Z L,LIU B,MA Y,et al.Differences in bacterial community structure and potential functions among Eucalyptus plantations with different ages and species of trees[J].Applied Soil Ecology,2020,149:103515. doi: 10.1016/j.apsoil.2020.103515
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  96
  • HTML全文浏览量:  22
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-01
  • 修回日期:  2022-12-26

目录

    /

    返回文章
    返回