留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

盐度与水位双重波动对芦苇去除水中氮磷的影响机理

郑汉杰 王子博 朱翔 杜鹏 于江华 谢磊 彭福全 王灵

郑汉杰, 王子博, 朱翔, 杜鹏, 于江华, 谢磊, 彭福全, 王灵. 盐度与水位双重波动对芦苇去除水中氮磷的影响机理[J]. 环境科学研究, 2023, 36(5): 986-994. doi: 10.13198/j.issn.1001-6929.2023.02.16
引用本文: 郑汉杰, 王子博, 朱翔, 杜鹏, 于江华, 谢磊, 彭福全, 王灵. 盐度与水位双重波动对芦苇去除水中氮磷的影响机理[J]. 环境科学研究, 2023, 36(5): 986-994. doi: 10.13198/j.issn.1001-6929.2023.02.16
ZHENG Hanjie, WANG Zibo, ZHU Xiang, DU Peng, YU Jianghua, XIE Lei, PENG Fuquan, WANG Ling. Influencing Mechanisms of Dual Fluctuations of Water Level and Salinity on Nitrogen and Phosphorus Removal by Reed[J]. Research of Environmental Sciences, 2023, 36(5): 986-994. doi: 10.13198/j.issn.1001-6929.2023.02.16
Citation: ZHENG Hanjie, WANG Zibo, ZHU Xiang, DU Peng, YU Jianghua, XIE Lei, PENG Fuquan, WANG Ling. Influencing Mechanisms of Dual Fluctuations of Water Level and Salinity on Nitrogen and Phosphorus Removal by Reed[J]. Research of Environmental Sciences, 2023, 36(5): 986-994. doi: 10.13198/j.issn.1001-6929.2023.02.16

盐度与水位双重波动对芦苇去除水中氮磷的影响机理

doi: 10.13198/j.issn.1001-6929.2023.02.16
基金项目: 国家自然科学基金面上项目(No.52270160);生态环境部南京环境科学研究所创新团队项目(No.GYZX200101);新疆维吾尔自治区科技计划项目(No.2022E02026)
详细信息
    作者简介:

    郑汉杰(1995-),男,江苏连云港人,zhj512886602@qq.com

    通讯作者:

    彭福全(1985-),男,山东日照人,高级工程师,硕士,主要从事流域生源物质归趋研究,pfq@nies.org

  • 中图分类号: X52

Influencing Mechanisms of Dual Fluctuations of Water Level and Salinity on Nitrogen and Phosphorus Removal by Reed

Funds: National Natural Science Foundation of China (No.52270160); Innovative Team Project of Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, China (No.GYZX200101); Xinjiang Uygur Autonomous Region Science and Technology Program Plan, China (No.2022E02026)
  • 摘要: 芦苇广泛分布于我国西北地区,具有净化水体氮磷的作用. 西北地区的河湖补水导致盐度和水位波动,但是现有研究难以明确盐度与水位双重波动对芦苇去除水体中氮磷的影响. 该试验设置3个不同的水位及盐度波动梯度,通过试验分析揭示水位与盐度波动对芦苇脱氮除磷过程的联合影响. 结果表明:①低频盐度上升(每3 d上升100 mg/L)有利于芦苇对水体中总氮、总磷和氨氮的去除,而高频盐度上升(每3 d上升200 mg/L)不利于其去除. 水位下降(每3 d下降2 cm)有利于氨氮的去除,低频水位上升(每3 d上升2 cm)有利于总氮的去除,而高频水位上升(每3 d上升4 cm)则对氨氮和总氮的去除起到抑制作用,主要是由于高频水位上升可降低水体溶解氧浓度. ②沙湖水位及盐度波动导致芦苇根长增加0.2~2.8 cm,说明现有补水过程并未影响芦苇生存. ③尽管低频盐度上升和水位下降促进了芦苇对氮磷的直接吸收,但并非水体中氮磷去除的最佳条件,原因是芦苇直接吸收并非氮磷去除的主要过程. 为达到保障水质的目的,水位与盐度的调控应优先达到微生物生长的适宜条件. ④AMOS结构方程模型和双因素方差分析得出盐度与水位的双重波动直接影响芦苇生长指标(P<0.01),间接影响水体氮磷浓度. 研究显示,盐度与水位双重波动直接影响芦苇生长指标,故应先控制盐度与水位波动范围,使环境有利于芦苇与微生物的生长,进而有利于芦苇对水中营养物质的吸收.

     

  • 图  1  试验装置示意

    Figure  1.  The diagram of experimental device

    图  2  不同盐度波动下氮磷去除率及浓度

    Figure  2.  Removal ratios and concentrations of nitrogen and phosphorus under fluctuations of salinity

    图  3  不同水位波动下氮磷去除率及浓度

    Figure  3.  Removal ratios and concentrations of nitrogen and phosphorus under fluctuations of water level

    图  4  试验前后芦苇总氮含量差、总磷含量差、根长及生物量差值的变化

    Figure  4.  Changes of reed growth indexes before and after the experiment

    图  5  AMOS结构方程模型结果

    注:***表示P<0.01,**表示P<0.05.

    Figure  5.  Results of AMOS structural equation modeling

    表  1  水位与盐度波动设计

    Table  1.   The experimental design of fluctuations of water level and salinity

    处理组具体设置
    A组(对照组) 初始水位20 cm,盐度2.0 g/L
    B组(高频水位上升+高频盐度上升) 水位每3 d上升4 cm,盐度每3 d增加200 mg/L
    C组(高频水位上升+低频盐度上升) 水位每3 d上升4 cm,盐度每3 d增加100 mg/L
    D组(高频水位上升+盐度下降) 水位每3 d上升4 cm,盐度每3 d下降100 mg/L
    E组(低频水位上升+高频盐度上升) 水位每3 d上升2 cm,盐度每3 d增加200 mg/L
    F组(低频水位上升+低频盐度上升) 水位每3 d上升2 cm,盐度每3 d增加100 mg/L
    G组(低频水位上升+盐度下降) 水位每3 d上升2 cm,盐度每3 d下降100 mg/L
    H组(水位下降+高频盐度上升) 水位每3 d下降2 cm,盐度每3 d增加200 mg/L
    I组(水位下降+低频盐度上升) 水位每3 d下降2 cm,盐度每3 d增加100 mg/L
    J组(水位下降+盐度下降) 水位每3 d下降2 cm,盐度每3 d下降100 mg/L
    下载: 导出CSV

    表  2  测定指标及检测方法

    Table  2.   Measuring indexes and analysis methods

    测定指标检测方法参考标准
    总氮(水样) 碱性过硫酸钾消解紫外分光光度法 《水质 总氮的测定 碱性过硫酸钾消解紫外分光光度法》(GB/T 11894—1989)
    总磷(水样) 钼酸铵分光光度法 《水质 总磷的测定 钼酸铵分光光度法》(GB 11893—1989)
    氨氮(水样) 纳氏试剂分光光度法 《水质 氨氮的测定 纳氏试剂分光光度法》(HJ 535—2009)
    生物量(干
    质量)
    烘干称量法
    总磷(植物) 碱性过硫酸钾氧化-钼锑抗分光光度法 《土壤环境监测技术规范》(HJ/T 166—2004)
    总氮(植物) 碱性过硫酸钾氧化-紫外分光光度法 《土壤环境监测技术规范》(HJ/T 166—2004)
    溶解氧 多参数水质分析仪(Hach HQ30D)原位测定
    下载: 导出CSV

    表  3  不同盐度波动下氮磷总去除率及溶解氧浓度

    Table  3.   Removal rates of nitrogen and phosphorus and dissolved oxygen under fluctuations of salinity

    试验组总去除率/%溶解氧浓度/(mg/L)
    氨氮总氮总磷
    对照组82.982.684.45.72±1.86
    高频盐度上升82.181.780.66.75±1.38
    低频盐度上升84.784.484.56.50±1.24
    盐度降低83.681.682.15.97±1.39
    下载: 导出CSV

    表  4  不同水位波动下氮磷总去除率及溶解氧浓度

    Table  4.   Removal rates of nitrogen and phosphorus and dissolved oxygen under fluctuations of water level

    试验组总去除率/%溶解氧浓度/(mg/L)
    氨氮总氮总磷
    对照组82.985.784.45.72±1.86
    高频水位上升78.378.583.26.15±1.32
    低频水位上升79.686.384.66.50±0.62
    水位降低84.184.983.96.57±1.09
    下载: 导出CSV
  • [1] XU L,ZHENG C L,MA Y.Variations in precipitation extremes in the arid and semi-arid regions of China[J].International Journal of Climatology,2021,41(3):1542-1554. doi: 10.1002/joc.6884
    [2] HUANG J P,MA J R,GUAN X D,et al.Progress in semi-arid climate change studies in China[J].Advances in Atmospheric Sciences,2019,36(9):922-937. doi: 10.1007/s00376-018-8200-9
    [3] XI H Y,FENG Q,SI J H,et al.Impacts of river recharge on groundwater level and hydrochemistry in the lower reaches of Heihe River Watershed,northwestern China[J].Hydrogeology Journal,2010,18(3):791-801. doi: 10.1007/s10040-009-0562-8
    [4] HILT S,GROSS E M,HUPFER M,et al.Restoration of submerged vegetation in shallow eutrophic lakes:a guideline and state of the art in Germany[J].Limnologica,2006,36(3):155-171. doi: 10.1016/j.limno.2006.06.001
    [5] 曹圣洁,夏瑞,张远,等.南水北调中线工程调水前后汉江下游水生态环境特征与响应规律识别[J].环境科学研究,2020,33(6):1431-1439.

    CAO S J,XIA R,ZHANG Y,et al.Characteristics and response of ecological environment in downstream of Hanjiang River before and after running of middle route of South-to-North Water Diversion Project[J].Research of Environmental Sciences,2020,33(6):1431-1439.
    [6] 巴图那生,蔡舰,周蕾,等.干旱地区芦苇湿地对氮、磷营养盐的去除效果及机制[J].环境工程,2019,37(4):38-42.

    BA T,CAI J,ZHOU L,et al.Removal of nitrogen and phosphorus in the Phragmites australis wetland in arid area,China[J].Environmental Engineering,2019,37(4):38-42.
    [7] 顾艳林,宝冬润,侯磊,等.洱海河口湿地沉积物对磷的吸附特征及影响因素[J].环境科学研究,2021,34(10):2358-2368.

    GU Y L,BAO D R,HOU L,et al.Phosphate adsorption characteristics and influencing factors in sediments of Erhai estuarine wetland[J].Research of Environmental Sciences,2021,34(10):2358-2368.
    [8] 宋慧佳,郭霄,董乾,等.黄河三角洲不同单倍型芦苇对稳定及波动水位的表型可塑性响应[J].生态学杂志,2022,41(7):1283-1289.

    SONG H J,GUO X,DONG Q,et al.Phenotypic plasticity responses of different haplotype Phragmites australis to stable and fluctuating water levels in Yellow River Delta[J].Chinese Journal of Ecology,2022,41(7):1283-1289.
    [9] SONG H J,GUO X,YU X N,et al.Is there evidence of local adaptation of Phragmites australis to water level gradients and fluctuation frequencies?[J].Science of the Total Environment,2021,756:144065. doi: 10.1016/j.scitotenv.2020.144065
    [10] HE Q,CUI B S,ZHAO X S,et al.Niches of plant species in wetlands of the Yellow River Delta under gradients of water table depth and soil salinity[J].Journal of Applied Ecology,2008,19(5):969-975.
    [11] ZHANG Y T,HOU K,QIAN H,et al.Characterization of soil salinization and its driving factors in a typical irrigation area of northwest China[J].Science of the Total Environment,2022,837:155808. doi: 10.1016/j.scitotenv.2022.155808
    [12] YANG H.China's soil plan needs strong support[J].Nature,2016,536(7617):375. doi: 10.1038/536375a
    [13] LISSNER J,SCHIERUP H H.Effects of salinity on the growth of Phragmites australis[J].Aquatic Botany,1997,55(4):247-260. doi: 10.1016/S0304-3770(96)01085-6
    [14] 陈友媛,孙萍,陈广琳,等.滨海区芦苇和香蒲耐盐碱性及除氮磷效果对比研究[J].环境科学,2015,36(4):1489-1496.

    CHEN Y Y,SUN P,CHEN G L,et al.A contrastive study on salt-alkaline resistance and removal efficiency of nitrogen and phosphorus by Phragmites australis and Typha angustifolia in coastal estuary area[J].Environmental Science,2015,36(4):1489-1496.
    [15] FU G P,HAN J Y,YU T Y,et al.The structure of denitrifying microbial communities in constructed mangrove wetlands in response to fluctuating salinities[J].Journal of Environmental Management,2019,238:1-9.
    [16] XIA J B,ZHAO X M,REN J Y,et al.Photosynthetic and water physiological characteristics of Tamarix chinensis under different groundwater salinity conditions[J].Environmental and Experimental Botany,2017,138:173-183. doi: 10.1016/j.envexpbot.2017.03.015
    [17] 蔡舰,白承荣,巴图那生,等.盐度对芦苇(Phragmites australis)表流湿地除氮效果的影响[J].湖泊科学,2017,29(6):1350-1358. doi: 10.18307/2017.0607

    CAI J,BAI C R,BA T,et al.Effect of salinity on nitrogen removal performance in a Phragmites australis constructed surface flow wetland[J].Journal of Lake Sciences,2017,29(6):1350-1358. doi: 10.18307/2017.0607
    [18] ASHRAF M,SHAHZAD S M,IMTIAZ M,et al.Salinity effects on nitrogen metabolism in plants-focusing on the activities of nitrogen metabolizing enzymes:a review[J].Journal of Plant Nutrition,2018,41(8):1065-1081. doi: 10.1080/01904167.2018.1431670
    [19] 卞福花,吴秋堂,吴梦迪,等.不同水盐生境下芦苇湿地植被及土壤碳氮磷生态化学计量特征[J].应用生态学报,2022,33(2):385-396.

    BIAN F H,WU Q T,WU M D,et al.C:N:P stoichiometry in plants and soils of Phragmites australis wetland under different water-salt habitats[J].Chinese Journal of Applied Ecology,2022,33(2):385-396.
    [20] 赵林丽,姜小三,邵学新,等.模拟盐度变化对人工湿地脱氮除磷效果的影响[J].土壤,2019,51(6):1122-1128.

    ZHAO L L,JIANG X S,SHAO X X,et al.Effects of simulated salinity change on nitrogen and phosphorus removal in constructed wetland[J].Soils,2019,51(6):1122-1128.
    [21] CHEN J,QIAN H.Characterizing replenishment water,lake water and groundwater interactions by numerical modelling in arid regions:a case study of Shahu Lake[J].Hydrological Sciences Journal,2017,62(1):104-113.
    [22] WU J H,XUE C Y,TIAN R,et al.Lake water quality assessment:a case study of Shahu Lake in the semiarid loess area of northwest China[J].Environmental Earth Sciences,2017,76(5):232. doi: 10.1007/s12665-017-6516-x
    [23] TIAN L F,ZHU X,WANG L M,et al.Long-term trends in water quality and influence of water recharge and climate on the water quality of brackish-water lakes:a case study of Shahu Lake[J].Journal of Environmental Management,2020,276:111290. doi: 10.1016/j.jenvman.2020.111290
    [24] ZHAO Y,XIA X,YANG Z,Growth and nutrient accumulation of Phragmites australis in relation to water level variation and nutrient loadings in a shallow lake [J].Journal of Environmental Sciences,2013,25(1):16-25
    [25] 吴春燕,何彤慧,于骥,等.不同盐度对芦苇生长及光合特征的影响[J].贵州农业科学,2016,44(6):18-21.

    WU C Y,HE T H,YU J,et al.Effects of growth and photosynthetic characteristics of Phragmite saustralis under different salinity concentration[J].Guizhou Agricultural Sciences,2016,44(6):18-21.
    [26] SÁNCHEZ E,SCORDIA D,LINO G,et al.Salinity and water stress effects on biomass production in different Arundo donax L. clones[J].BioEnergy Research,2015,8(4):1461-1479. doi: 10.1007/s12155-015-9652-8
    [27] 丁明明,黎磊,金斌松,等.水位波动的幅度与频率对刺苦草(Vallisneria spinulosa)生物量和形态特征的影响[J].湖泊科学,2021,33(1):192-203. doi: 10.18307/2021.0116

    DING M M,LI L,JIN B S,et al.Impact of water level fluctuations with different amplitudes and frequencies on biomass and morphological traits of Vallisneria spinulosa[J].Journal of Lake Sciences,2021,33(1):192-203. doi: 10.18307/2021.0116
    [28] WEI W S,TONG J X,HU B X.Study on ecological dynamic model for phytoremediation of farmland drainage water[J].Journal of Hydrology,2019,578:124026. doi: 10.1016/j.jhydrol.2019.124026
    [29] 唐伟,许海,詹旭,等.生态浮床对千岛湖水体氮磷净化效果研究[J].环境科学研究,2022,35(4):926-935.

    TANG W,XU H,ZHAN X,et al.Nitrogen and phosphorus purification effects of ecological floating bed in Qiandao Lake[J].Research of Environmental Sciences,2022,35(4):926-935.
    [30] 李春艳,谢珊珊,王文文,等.干湿交替循环频率对生物膜特征及其微生物群落的影响[J].中国环境科学,2023,43(2):854-862.

    LI C Y,XIE S S,WANG W W,et al.Effects of alternate drying-wetting cycles on biofilm characteristics and their microbial communities[J].China Environmental Science,2023,43(2):854-862.
    [31] XUE L,LI X Z,YAN Z Z,et al.Native and non-native halophytes resiliency against sea-level rise and saltwater intrusion[J].Hydrobiologia,2018,806(1):47-65. doi: 10.1007/s10750-017-3333-x
    [32] 姚天启,严晗璐,廖雪珂,等.引调水河道氮的迁移转化及微生物群落结构特征:以望虞河为例[J].环境科学学报,2022,42(1):195-204.

    YAO T Q,YAN H L,LIAO X K,et al.Characteristics of nitrogen transformation and microbial community structure in the diversion river:a case study of the Wangyu River[J].Acta Scientiae Circumstantiae,2022,42(1):195-204.
    [33] SCHMIEDER K,DIENST M,OSTENDORP W,et al.Effects of water level variations on the dynamics of the reed belts of Lake Constance[J].International Journal of Ecohydrology & Hydrobiology,2004,4:469-480.
    [34] KOPPITZ H,KÜHL H.To the importance of genetic diversity of Phragmites australis in the development of reed stands[J].Wetlands Ecology and Management,2000,8(6):403-414. doi: 10.1023/A:1026557901479
    [35] JEPPESEN E,BRUCET S,NASELLI-FLORES L,et al.Ecological impacts of global warming and water abstraction on lakes and reservoirs due to changes in water level and related changes in salinity[J].Hydrobiologia,2015,750(1):201-227. doi: 10.1007/s10750-014-2169-x
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  101
  • HTML全文浏览量:  14
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-16
  • 修回日期:  2023-02-20

目录

    /

    返回文章
    返回