结合人工智能的生物多样性保护热点问题分析与展望

Analysis and Prospects of Key Issues in Biodiversity Conservation Combined with Artificial Intelligence

  • 摘要: 全球生物多样性保护面临的挑战日益严峻,结合人工智能技术(AI)的生物多样性保护成为生态学发展的关键领域,其在生物多样性保护数据综合分析、多物种保护决策、多模态数据应用、物种识别及海量信息整合等领域展现了巨大潜力。在文献计量分析的基础上,分析了2005—2025年Web of Science (WoS)数据库和中国知网(CNKI)数据库中AI在生物多样性研究热点的应用,明晰AI与生态学交叉赋能生物多样性保护的研究脉络,凝练前沿热点与核心挑战,并对未来研究提出展望。结果表明:①该领域发文量从2020年后呈现指数级增长,2024年发文量高达2005年的33倍。英文研究中中国发文量最高,在国际科研合作中处于较为中心地位。②英文研究形成保护决策、生态机制和AI技术三大热点集群,侧重全球尺度建模与多模态数据融合;中文研究则在智能监测、农业生态和数据驱动决策方面成果突出,侧重智能监测技术与生态应用。③AI技术应用于生物多样性研究的主题经历了基础理论探索阶段(2005—2015年)→技术发展与多模态融合创新阶段(2016—2020年)→全球化智能应用阶段(2021至今)的演进。④该领域研究热点从单一物种识别拓展至自动化监测、多模态数据融合、生态过程建模与预测以及智能化决策优化,但仍面临数据偏倚、多源异构、多保护目标权衡等挑战。未来建议重点加强生物多样性多模态数据集的构建与物种协同保护机制研究,深入探索跨尺度生态机理建模及边缘智能模型开发,研发内嵌生物多样性知识图谱和多尺度感知能力的新一代AI模型;同时推动大模型本土化与全球协同治理,深化AI在生物多样性保护中的创新应用,贡献具有中国特色的技术方案。

     

    Abstract: With escalating global challenges in biodiversity conservation, the integration of Artificial Intelligence (AI) technologies has emerged as a critical area of ecological advancement. This synergy shows significant potential in key areas such as conservation data analytics, multispecies decision-making frameworks, multimodal data applications, species identification systems, and big data integration. Using bibliometric analysis of the Web of Science (WoS) and China National Knowledge Infrastructure (CNKI) databases spanning 2005-2025, this study investigates the evolving patterns of AI applications in biodiversity research. We systematically trace the development of AI-ecology integration in conservation practices, identify cutting-edge innovations and persistent challenges, and propose future research directions. The results show that: (1) The number of publications has increased 33-fold since 2005, with China becoming the leading contributor to English-language research and maintaining a central role in international scientific collaborations. (2) Global research focuses on three major clusters including conservation decision-making systems, ecological mechanism modeling, and AI technological innovation, particularly in global-scale predictive modeling and multimodal data fusion. Chinese research excels in intelligent monitoring systems, agroecological applications, and data-driven decision frameworks. (3) Thematic development has progressed through three distinct phases including foundational theoretical exploration (2005-2015), technological advancement with multimodal integration (2016-2020) and global intelligent implementation (since 2021). (4) Research frontiers have evolved from basic species recognition to include automated monitoring networks, multimodal data synthesis, ecological process simulation, and intelligent decision optimization. Ongoing challenges include mitigating data bias, resolving multi-source heterogeneity, and addressing trade-offs in multi-objective conservation. We recommend developing multimodal biodiversity datasets with cross-species conservation mechanisms, advancing cross-scale ecological modeling and edge intelligence systems, creating next-generation AI architectures that integrate biodiversity knowledge graphs, promoting localized large-model development in conjunction with global governance frameworks, and deepening AI innovation in conservation practices with contextual solutions tailored to China.

     

/

返回文章
返回