四川盆地暖季臭氧长期演变及气象条件和排放贡献分析

Long-Term Evolution of Surface Ozone and Contributions of Meteorological Conditions and Emissions in the Sichuan Basin during the Warm Season

  • 摘要: 受排放强度、地形封闭性及特殊气象条件等共同影响,四川盆地臭氧(O3)污染问题日益严重。基于2019—2024年每年5—9月四川盆地O3浓度监测数据及对应气象数据,采用Thiel-Sen估算、随机森林及气象标准化方法,揭示区域O3浓度时空演变规律及驱动机制。结果表明:①2019—2024年每年5—9月四川盆地小时O3浓度和日最小O3浓度的区域平均值均呈川南地区>成都平原>川东北地区的特征,O3日最大8 h滑动平均(MDA8 O3)浓度和白天O3浓度增量的区域平均值均呈成都平原>川南地区>川东北地区的特征,成都平原O3生成受本地光化学反应影响强于川南地区和川东北地区。②2019—2024年每年5—9月四川盆地O3浓度呈显著上升趋势,川南地区增速最快,小时O3浓度和MDA8 O3浓度的年增速分别为3.3和3.6 μg/m3;3个区域O3浓度日变化趋势一致,均呈单峰单谷型分布,峰值增速高于谷值,表明光化学效率提升对O3污染发生影响显著。③影响O3生成的气象条件贡献率(71.4%~80.0%)明显高于排放贡献率(20.0%~28.6%),温度、相对湿度、混合层高度和太阳辐射是影响四川盆地O3生成的主要气象因素;去除气象影响后的小时O3浓度年增速(0.9~1.5 μg/m3)明显低于观测值年增速(2.8~3.3 μg/m3)。研究显示,四川盆地O3浓度变化受气象条件影响较大,有利的气象条件放大了O3浓度的实际增长,特别是2022年后气象条件对O3浓度上升起明显正向促进作用,后期应加强对高温低湿条件下O3污染的防控。

     

    Abstract: Due to intense emissions, complex terrain, and unique meteorological conditions, the Sichuan Basin has experienced severe ozone (O3) pollution in recent years. In this study, the Thiel-Sen estimator, random forest modeling, and meteorological normalization technique were used to analyze the spatiotemporal patterns and underlying mechanisms of regional surface O3 concentrations using monitoring data and corresponding meteorological observations from May to September during 2019-2024. Spatially, the hourly and daily minimum O3 concentrations were highest in southern Sichuan, followed by the Chengdu Plain and northeastern Sichuan. In contrast, maximum daily 8-hour average (MDA8) and daytime O3 concentrations peaked in the Chengdu Plain, indicating stronger local photochemical production in this region. O3 concentrations levels showed significant increasing trends from May to September during 2019-2024, with southern Sichuan experiencing the fastest annual growth (hourly O3 concentrations was 3.3 μg/m3, MDA8 O3 concentrations was 3.6 μg/m3). Diurnal variations consistently followed a unimodal peak-trough pattern across all subregions, with peak concentration growth rates significantly surpassing nighttime rates, highlighting enhanced photochemical efficiency as the dominant driver. Meteorological contributions (71.4%-80.0%) outweighed emission contributions (20.0%-28.6%) in influencing O3 concentrations trends, with relative humidity, temperature, mixing layer height, and downward surface solar radiation identified as the key meteorological factors. After meteorological normalization, the annual growth rate of hourly O3 concentrations (0.9-1.5 μg/m3) was substantially lower than the observed rate (2.8-3.3 μg/m3), underscoring the amplifying influence of meteorological conditions, particularly under post-2022 high-temperature and low-humidity conditions. These findings suggest that O3 control strategies should prioritize mitigating pollution episodes that arise under such synergistic meteorological conditions.

     

/

返回文章
返回