基于微生物互作的厌氧氨氧化工艺富里酸降解机制研究

Degradation Mechanisms of Fulvic Acid in Anammox Process Based on Microbial Interactions

  • 摘要: 厌氧氨氧化作为一种高效节能的生物脱氮工艺,在处理含氮废水方面具有重要应用前景。然而,污水中普遍存在的难降解有机物富里酸(FA)仍然是厌氧氨氧化工艺稳定运行的威胁,其作用机制尚不明确。该研究构建了实验室规模的上流式厌氧生物反应器,系统评估了厌氧氨氧化工艺中FA结构演变规律及其微生物驱动机制。结果表明:①在厌氧氨氧化工艺过程中,FA结构发生显著转变,低浓度(25.3~65.1 mg/L)条件下,FA芳香度和腐殖化程度显著降低,此时厌氧氨氧化菌(Candidatus BrocadiaCandidatus Jettenia)保持较高活性(TN去除率>80%);而高浓度(>65.1 mg/L)条件则抑制氮素、FA转化过程,并导致厌氧氨氧化菌相对丰度下降约40%。②宏基因组测序则进一步揭示多物种协作关系,Anaerolineaceae通过分解大分子FA为小分子物质,既为伴生菌(Denitratisoma)提供碳源,又减轻了FA对厌氧氨氧化菌的潜在抑制。③功能基因分析表明,FA浓度升高率先抑制氮转化相关基因(肼难以被及时消耗),进而抑制异养微生物的芳香族化合物降解途径(苯甲酰-CoA→3-羟基庚二酰-CoA),无法实现高浓度FA清除。研究显示,微生物群落的“降解”能力决定厌氧氨氧化工艺命运,低浓度FA可被伴生菌有效分解,而高浓度FA则会同时抑制氮转化与有机降解通路,导致工艺崩溃。

     

    Abstract: Anammox is an energy-saving bioprocess for nitrogen removal with significant application potential in nitrogen-laden wastewater treatment. However, the widespread presence of recalcitrant fulvic acid (FA) in sewage jeopardizes anammox system stability, and the underlying mechanisms remain poorly understood. In this study, a lab-scale up flow anaerobic bioreactor was constructed to systematically investigate the structural transformation of FA and the associated microbial mechanisms in anammox systems. Results revealed that: (1) Significant FA structural changes occurred at low concentrations (25.3-65.1 mg/L), reduced FA aromaticity and humification of FA were observed, accompanied by sustained anammox bacterial activity (Candidatus Brocadia/Jettenia) and total nitrogen removal efficiency >80%. In contrast, high FA concentrations (>65.1 mg/L) inhibited nitrogen/FA conversion and reduced anammox bacterial relative abundance by approximately 40%. (2) Metagenomics further elucidated microbial synergy: Anaerolineaceae degraded FA macromolecules into smaller substrates, fueling partner bacteria (Denitratisoma) and mitigating FA′s inhibitory effects on anammox. (3) Gene profiling indicated FA upregulation initially suppressed nitrogen-cycle genes (delaying hydrazine utilization), and subsequently disrupted heterotrophic aromatic degradation (benzoyl-CoA→3-hydroxyadipyl-CoA pathway), compromising high-FA clearance. Research reveals that the microbial community′s catabolic prowess determines the stability of the anammox process: low concentrations of FA can be effectively decomposed by accompanying bacteria, whereas high concentrations simultaneously inhibit both nitrogen transformation and organic degradation pathways, ultimately causing systemic collapse.

     

/

返回文章
返回