响应曲面法优化油茶饼对活性红15的生物吸附特征及机理
Reactive Red 15 Biosorption on Oil-Tea Cake:Optimization Using Response Surface Methodology and Mechanism
-
摘要: 基于“以废治废”的理念,以农林业废弃物——油茶饼为原料制备生物吸附剂,吸附去除废水中的RR15(C.I. Reactive Red 15,活性红15)染料,并采用响应曲面法中的Box-Behnken设计对油茶饼生物吸附剂吸附RR15的条件进行优化. 结果表明:pH对油茶饼生物吸附剂吸附RR15的吸附容量和去除率均有显著影响(P<0.000 1);当pH为1.0、初始ρ(RR15)为300 mg/L、吸附温度为20 ℃时,油茶饼生物吸附剂对RR15的吸附效果最佳. 相比于Langmuir和Freundlich吸附等温线模型,Temkin吸附等温线模型可以更好地描述油茶饼生物吸附剂对RR15的吸附平衡数据. 吸附温度为20 ℃时,由Langmuir吸附等温线模型计算得到的Q0(吸附剂的单层饱和吸附量)为74.63 mg/g. 动力学分析显示,油茶饼生物吸附剂对RR15的吸附过程符合准二级动力学模型(R2>0.999 7),支持了限速步骤是化学吸附的理论;内部扩散和边界层扩散都可能影响吸附速率. 热力学分析表明,该吸附过程是一个自发的放热过程. FTIR(fourier transform infrared spectroscopy,傅里叶变换红外光谱)分析发现,油茶饼生物吸附剂上羟基、胺基等官能团可能是RR15染料的主要结合位点. 研究显示,油茶饼生物吸附剂是一种具有潜力的绿色吸附剂,可以有效去除废水中的RR15染料.Abstract: Based on the concept of waste control by waste, agroforestry waste oil-tea cake was used to remove azo dye Reactive Red 15 (RR15) via biosorption from aqueous solution. To optimize the biosorption condition, a Box-Behnken Design with a response surface methodology was carried out. Three independent variables-pH, initial RR15 concentration and biosorption temperature-were studied, and biosorption capacity and removal efficiency were set as the response values. Statistical analysis showed that pH was highly significant for both biosorption capacity and removal efficiency (P<0.0001); the optimal biosorption condition was pH 1.0, initial RR15 concentration 300 mg/L and biosorption temperature 20 ℃. The Temkin isotherm model was more applicable for describing the biosorption equilibrium data in the whole initial RR15 concentration range than the Freundlich or Langmuir isotherm model. Q0 gained from Langmuir isotherm model at 20 ℃ was 74.63 mg/g. The kinetic study showed that the experimental data were well fitted by the pseudo-second-order model (R2>0.9997), which indicated that the dominant biosorption belonged to the chemisorptive nature. Both intra-particle diffusion and boundary layer diffusion might affect the biosorption rate. Thermodynamic study demonstrated that the biosorption was a spontaneous and exothermic process. To understand the mechanical behavior of RR15 biosorption process, SEM, EDS and FTIR were employed to characterize the oil-tea cake pre- and post-biosorption. The FTIR analysis indicated that functional groups (e.g., amine, hydroxyl) on the oil-tea cake biosorbent were the active binding sites for the RR15 biosorption. These results showed that oil-tea cake is a promising biosorbent, which could effectively remove RR15 from dye wastewater.
下载: