留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

场地复合污染的生态效应与风险评估研究进展和展望

赵丹 吴畏达 孙倩 於方

赵丹, 吴畏达, 孙倩, 於方. 场地复合污染的生态效应与风险评估研究进展和展望[J]. 环境科学研究, 2023, 36(1): 30-43. doi: 10.13198/j.issn.1001-6929.2022.09.06
引用本文: 赵丹, 吴畏达, 孙倩, 於方. 场地复合污染的生态效应与风险评估研究进展和展望[J]. 环境科学研究, 2023, 36(1): 30-43. doi: 10.13198/j.issn.1001-6929.2022.09.06
ZHAO Dan, WU Weida, SUN Qian, YU Fang. Research Progress and Prospect of Ecological Effect and Risk Assessment of Site Combined Pollution[J]. Research of Environmental Sciences, 2023, 36(1): 30-43. doi: 10.13198/j.issn.1001-6929.2022.09.06
Citation: ZHAO Dan, WU Weida, SUN Qian, YU Fang. Research Progress and Prospect of Ecological Effect and Risk Assessment of Site Combined Pollution[J]. Research of Environmental Sciences, 2023, 36(1): 30-43. doi: 10.13198/j.issn.1001-6929.2022.09.06

场地复合污染的生态效应与风险评估研究进展和展望

doi: 10.13198/j.issn.1001-6929.2022.09.06
基金项目: 国家重点研发计划项目(No.2019YFC1804400);国家自然科学基金项目(No.72074156)
详细信息
    作者简介:

    赵丹(1985-),女,湖南湘潭人,副研究员,博士,主要从事土壤地下水环境损害鉴定评估研究,zhaodan@caep.org.cn

    通讯作者:

    於方(1974-),女,山西太原人,研究员,博士,主要从事生态环境损害鉴定评估与环境经济核算研究,yufang@caep.org.cn

  • 中图分类号: X53

Research Progress and Prospect of Ecological Effect and Risk Assessment of Site Combined Pollution

Funds: National Key Research and Development Program of China (No.2019YFC1804400); National Natural Science Foundation of China (No.72074156)
  • 摘要: 我国已初步形成基于人体健康风险的污染场地土壤风险评估制度和技术标准体系,但基于保护生态受体的土壤污染风险评估技术方法和标准体系尚未构建. 本文从我国重点行业场地土壤复合污染现状出发,综述了典型行业场地土壤特征污染物复合情形下的生态效应,分析了产生不同联合效应的机理. 对目前常用的生态风险评估方法进行了分类阐述,并评述了复合污染生态效应和风险表征的研究进展,以期为我国构建全面系统的土壤污染风险管控体系提供支撑. 我国冶炼、焦化等重点行业场地通常呈现重金属-重金属复合、重金属-多环芳烃复合等污染特征,当这类污染物共存时,可通过影响彼此的生物吸收转运、降解转化、生物毒性等,产生协同、加和、拮抗等联合效应. 目前常用的生态风险评估方法包括指数法、商值法、概率法等,指数法基于污染源、暴露途径和生物受体的不同指标构建综合评估指数量化污染物的相对风险,商值法基于污染物暴露量和毒性参考值等量化污染物的绝对风险,概率法通过污染物和毒性数据的概率密度函数和累积分布概率函数等获得考虑污染分布和毒性效应变异性的绝对风险,复合污染情形下,可通过浓度加和、效应加和以及二者相结合的多层次方法进行综合表征. 本文针对目前生态风险评估方法体系构建存在的重点难点问题,建议从合理构建多维度多要素综合风险指数、分区分类构建本土化生物有效性和毒性参数、基于复合污染毒性效应机理科学构建概率风险表征方法等方面开展深入研究,推动生态风险评估规范化和精准化.

     

  • 图  1  复合污染毒性效应机理

    Figure  1.  Mechanism of toxic effects of combined pollution

    图  2  生态风险评估方法

    Figure  2.  Methods of ecological risk assessment

    图  3  生态风险评估框架、重点和难点

    Figure  3.  Framework, key points and difficulties of ecological risk assessment

    表  1  冶炼、焦化等重点行业土壤复合污染

    Table  1.   Soil combined pollution in key industries such as smelting and coking

    行业类型场地氰化物二噁英总石油烃数据来源
    冶炼行业 中国广西南丹县大厂镇矿区周边 537 102 341 文献[3]
    中国江西乐安县某废弃钨冶炼厂 493 247 5 618 96 文献[4]
    中国锡矿山锑矿区 460 42 138 16 525 文献[5]
    中国广西某铅锌矿矿区周边 6 2 820 13 900 175 158 107 140 346 文献[6]
    中国某有色金属加工厂 3 220 17 600 354 16 900 116 6 590 746 文献[7]
    焦化行业 中国苏南某焦化场地 333 1 780 7 118 19 55 50 7 836 201 100 文献[8]
    中国西南某焦化厂 4 241 326 24 7 0.002 71) 17 430 文献[9]
    悉尼人工制气厂 671 489 230 379 文献[10]
    行业类型 场地 甲苯 二甲苯 BaP DBA BkF BbF BaA Nap Chr Inp 数据来源
    冶炼行业 中国广西南丹县大厂镇矿区周边 1 1 200 385 0.55 0.55 55 5.5 5.5 25 490 5.5 文献[3]
    中国江西乐安县某废弃钨冶炼厂 4 1 200 1 210 1.5 1.5 151 15 15 70 1 293 15 文献[4]
    中国锡矿山锑矿区 文献[5]
    中国广西某铅锌矿矿区周边 文献[6]
    某有色金属加工厂 文献[7]
    焦化行业 中国苏南某焦化场地 文献[8]
    中国西南某焦化厂 66 15 67 168 167 75 144 11 文献[9]
    悉尼人工制气厂 61 1 680 235 426 1 550 1 490 1 330 1 430 1 050 文献[10]
    注:汞、铅、镉、铜、砷、镍、锑、氰化物、二噁英、总石油烃、苯、甲苯、二甲苯、BaP、DBA、BkF、BbF、BaA、Nap、Chr、Inp的一类限值分别为8、400、20、2 000、20、150、20、22、0.00001、826、1、1200、385、0.55、0.55、55、5.5、5.5、25、490、5.5 mg/kg,二类限值分别为38、800、65、18000、60、900、180、135、0.00004、4500、4、1200、1210、1.5、1.5、151、15、15、70、1293、15 mg/kg,主要依据为《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600—2018);锌的一类和二类评价标准分别为3 500和10 000 mg/kg,铬的一类和二类评价标准分别为250和2 500 mg/kg,主要依据为《场地土壤环境风险评价筛选值》(DB11/T 811—2011). 1)表示由于二噁英检出限和标准限值均较低,为确保单位一致,此处保留四位有效数字.
    下载: 导出CSV

    表  2  复合污染毒性效应和风险表征模型

    Table  2.   Toxic effects and risk characterization models of combined pollution

    序号模型名称公式参数说明
    1 CA模型 $\begin{array}{c} {\mathrm{E}\mathrm{C}}_{x,\mathrm{m}\mathrm{i}\mathrm{x}}={\left(\displaystyle\sum\limits_{i=1}^{n}\dfrac{{p}_{i}}{{\mathrm{E}\mathrm{C}}_{x,i}}\right)}^{-1} \\ \displaystyle\sum\limits_{i=1}^{n}\dfrac{{{c_{i}}^{*}}}{{\mathrm{E}\mathrm{C}}_{x,i}}=1 \end{array}$ 式中,ECx,mix表示引起x%效应的混合物的效应浓度,ECx,i表示第i个污染物单独存在并引起与混合物相同效应(x%)时的浓度,pi表示第i种污染物在混合物中的相对质量比例. 对于致死效应数据,只需将ECx,i换成LCx,i(x%致死浓度)即可,ci*表示n种污染物组成的混合物中第i种污染物的浓度,该浓度可产生x%的效应
    2 IA模型 $\begin{array}{c} E\left({c}_{\mathrm{m}\mathrm{i}\mathrm{x}}\right)=1-\displaystyle\prod\limits_{i=1}^{n}[1-E({c}_{i}\left)\right] \\ E\left({c}_{\mathrm{m}\mathrm{i}\mathrm{x}}\right)=\displaystyle\prod\limits_{i=1}^{n}E\left({c}_{i}\right) \end{array}$ 式中,cmixE(cmix)分别表示混合物的总浓度和总效应,E(ci)表示第i个成分污染物的效应
    3 CI模型 $\begin{array}{c} {\left(\mathrm{C}\mathrm{I}\right)}_{x}=\displaystyle\sum\limits_{i=1}^{n}\dfrac{ {\left(D\right)}_{i} }{({ {D}_{x})}_{i} }=\displaystyle\sum\limits_{i=1}^{n}\dfrac{ {\left({D}_{x}\right)}_{1-n}\left\{{ {\left[D\right]}_{i} }/{\displaystyle\sum\limits_{i=1}^{n}\left[D\right]_{i}}\right\} }{ {\left({D}_{m}\right)}_{i}{\left\{\dfrac{ {\left({f}_{\mathrm{a}\mathrm{x} }\right)}_{i} }{\left[1-{\left({f}_{\mathrm{a}\mathrm{x} }\right)}_{i}\right]}\right\} }^{1/mi} } \\ {\mathrm{E}\mathrm{C} }_{x,\mathrm{m}\mathrm{i}\mathrm{x} }={\left(\displaystyle\sum _{i=1}^{n}\dfrac{ {p}_{i} }{ {\mathrm{E}\mathrm{C} }_{x,i}\times {\mathrm{C}\mathrm{I} }_{x\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p} } }\right)}^{-1} \end{array}$ 式中,(CI)x表示混合物中导致x%致死率的混合物中n种污染物的浓度之和,(Dx)1−n表示混合物中导致x%死亡率的n种污染物的浓度之和,${ {\left[D\right]}_{i} }/{\displaystyle\sum\limits_{i=1}^{n}\left[D\right]_{i}}$表示导致x%死亡率的n种污染物中每一种的剂量比例,${\left({D}_{m}\right)}_{i}{\left\{{ {\left({f}_{\mathrm{a}\mathrm{x} }\right)}_{i} }/{\left[1-{\left({f}_{\mathrm{a}\mathrm{x} }\right)}_{i}\right]}\right\} }^{1/mi}$表示导致x%死亡率的每种污染物的浓度,CIxcomp表示从混合物的试验毒性曲线计算的混合物在x效应水平(x%)处的组合指数值
    4 TU模型、TI模型 $ \begin{array}{c}{\mathrm{T}\mathrm{U}}_{i}=\dfrac{{C}_{i}}{{\mathrm{C}\mathrm{E}}_{xi}} \\ \mathrm{T}\mathrm{I}=\displaystyle\sum\limits _{i=1}^{n}{\mathrm{T}\mathrm{U} }_{i}\end{array}$ 式中,TUi表示污染物i的毒性单位,Ci表示混合物中污染物i的浓度,CExi表示导致x%效应的污染物i的浓度,TI表示混合物中毒性物质的加和效应毒性指数
    5 风险相加模型 $ \mathrm{H}\mathrm{I}={\mathrm{H}\mathrm{Q}}_{\mathrm{A}}+{\mathrm{H}\mathrm{Q}}_{\mathrm{B}}+{\mathrm{H}\mathrm{Q}}_{\mathrm{C}} $ 式中,HQA、HQB和HQC分别为污染物A、B、C的风险
    6 风险效应加和模型 $\mathrm{m}\mathrm{s}\mathrm{P}\mathrm{A}\mathrm{F}=1-\displaystyle\prod\limits_{i=1}^{n}(1-{\mathrm{P}\mathrm{A}\mathrm{F} }_{i})$ 式中,msPAF表示复合污染产生的潜在影响比例,PAFi表示污染物i产生的潜在影响比例
    7 风险加权模型 ${R}_{\mathrm{t}\mathrm{o}\mathrm{t}\mathrm{a}\mathrm{l} }=\displaystyle\sum\limits_{i=1}^{n}{R}_{i}\times {W}_{i}$ 式中,Rtotal表示复合污染的风险,Ri表示污染物i的风险,Wi表示污染物i的权重
    下载: 导出CSV
  • [1] United States Environmental Protection Agency (US EPA).Superfund remedy report 16th Edition[R/OL].Washington DC:United States Environmental Protection Agency (US EPA), (2020-07-29)[2022-05-25].https://www.epa.gov/sites/default/files/2020-07/documents/100002509.pdf.
    [2] 谭海剑,黄祖照,宋清梅,等.粤港澳大湾区典型城市遗留地块土壤污染特征研究[J].环境科学研究,2021,34(4):976-986. doi: 10.13198/j.issn.1001-6929.2020.11.27

    TAN H J,HUANG Z Z,SONG Q M,et al.Characterization of soil contaminations in brownfield sites in a typical city in Guangdong-Hong Kong-Macao Greater Bay Area[J].Research of Environmental Sciences,2021,34(4):976-986. doi: 10.13198/j.issn.1001-6929.2020.11.27
    [3] 姚航,张杏锋.锡矿开采对土壤的重金属污染及风险评价:以广西南丹县大厂镇为例[J].江苏农业科学,2017,45(6):230-235.
    [4] 董志询,陈素华,李中浤.江西某废弃钨冶炼厂场地土壤重金属污染特征与风险评价[J].南昌航空大学学报(自然科学版),2019,33(3):105-110.

    DONG Z X,CHEN S H,LI Z H.In-situ soil pollution by heavy metal in an abandoned tungsten smelting plant[J].Journal of Nanchang Hangkong University (Natural Sciences),2019,33(3):105-110.
    [5] 黄中杰,邓仁健,周赛军,等.矿业活动对锑矿区土壤的重金属污染特征及生态风险影响[J].土木与环境工程学报,2020,42(4):194-202.

    HUANG Z J,DENG R J,ZHOU S J,et al.Effects of mining activities on soil heavy metal pollution characteristics and ecological risks in antimony mining areas[J].Journal of Civil and Environmental Engineering,2020,42(4):194-202.
    [6] 谢金亮,赵庆圆.广西某铅锌矿区土壤重金属污染状况分析与评价[J].有色冶金节能,2019,35(2):34-39. doi: 10.3969/j.issn.1008-5122.2019.02.011

    XIE J L,ZHAO Q Y.Analysis and evaluation of heavy metal pollution in soil of lead-zinc mining area in Guangxi[J].Energy Saving of Nonferrous Metallurgy,2019,35(2):34-39. doi: 10.3969/j.issn.1008-5122.2019.02.011
    [7] 任加国,龚克,马福俊,等.基于BP神经网络的污染场地土壤重金属和PAHs含量预测[J].环境科学研究,2021,34(9):2237-2247. doi: 10.13198/j.issn.1001-6929.2021.04.22

    REN J G,GONG K,MA F J,et al.Prediction of heavy metal and PAHs content in polluted soil based on BP neural network[J].Research of Environmental Sciences,2021,34(9):2237-2247. doi: 10.13198/j.issn.1001-6929.2021.04.22
    [8] 尹勇,戴中华,蒋鹏,等.苏南某焦化厂场地土壤和地下水特征污染物分布规律研究[J].农业环境科学学报,2012,31(8):1525-1531.

    YIN Y,DAI Z H,JIANG P,et al.Characteristic distributions of typical contaminants in the soils and groudwater of a coking plant in the south of Jiangsu Province,China[J].Journal of Agro-Environment Science,2012,31(8):1525-1531.
    [9] 王培俊,刘俐,李发生,等.西南某焦化场地土壤中典型污染物的特征分布[J].煤炭学报,2011,36(9):1587-1592. doi: 10.13225/j.cnki.jccs.2011.09.036

    WANG P J,LIU L,LI F S,et al.Characteristic distribution of typical contaminants in the soil of a coking plant site in the southwest of China[J].Journal of China Coal Society,2011,36(9):1587-1592. doi: 10.13225/j.cnki.jccs.2011.09.036
    [10] THAVAMANI P,MEGHARAJ M,NAIDU R.Multivariate analysis of mixed contaminants (PAHs and heavy metals) at manufactured gas plant site soils[J].Environmental Monitoring and Assessment,2012,184(6):3875-3885. doi: 10.1007/s10661-011-2230-4
    [11] 于寿娜,廖敏,黄昌勇.镉、汞复合污染对土壤脲酶和酸性磷酸酶活性的影响[J].应用生态学报,2008,19(8):1841-1847.

    YU S N,LIAO M,HUANG C Y.Effects of cadmium and mercury combined pollution on soil urease and acid phosphatase activities[J].Chinese Journal of Applied Ecology,2008,19(8):1841-1847.
    [12] 林立金,朱雪梅,邵继荣,等.锌铬复合污染对水稻不同生育期土壤酶活性的影响[J].核农学报,2007,21(6):623-629. doi: 10.3969/j.issn.1000-8551.2007.06.019

    LIN L J,ZHU X M,SHAO J R,et al.Effects of compound pollution of zinc and chromium on soil enzyme activity at different growth stages of rice plant[J].Journal of Nuclear Agricultural Sciences,2007,21(6):623-629. doi: 10.3969/j.issn.1000-8551.2007.06.019
    [13] 汪杏,沈根祥,胡双庆,等.铬(Ⅵ)和菲单一及复合污染对土壤微生物酶活性的影响[J].农业环境科学学报,2016,35(7):1300-1307.

    WANG X,SHEN G X,HU S Q,et al.Effects of single and joint pollution of chromium(Ⅵ) and phenanthrene on microbiological enzyme activities in soil[J].Journal of Agro-Environment Science,2016,35(7):1300-1307.
    [14] 胡双庆,沈根祥,顾海蓉,等.菲和铬(Ⅵ)单一及复合暴露对土壤微生物多样性的影响[J].生态毒理学报,2017,12(3):535-543.

    HU S Q,SHEN G X,GU H R,et al.Effects of single and combined exposure to phenanthrene and chromium(Ⅵ) on microbial diversity in soils[J].Asian Journal of Ecotoxicology,2017,12(3):535-543.
    [15] 张慧,党志,姚丽贤,等.镉芘单一污染和复合污染对土壤微生物生态效应的影响[J].农业环境科学学报,2007,26(6):2225-2230.

    ZHANG H,DANG Z,YAO L X,et al.Eco-toxicological effect of cadium and Pyrene combined and simplex pollution on soil microbe[J].Journal of Agro-Environment Science,2007,26(6):2225-2230.
    [16] 赵晓祥,冯璐,王宇晖.锌、镉单一及复合胁迫下番茄幼苗生理响应及联合毒性的研究[J].安全与环境学报,2020,20(3):1176-1184. doi: 10.13637/j.issn.1009-6094.2019.0660

    ZHAO X X,FENG L,WANG Y H.Physiological responses and joint toxicity of tomato seedlings under single and combined stress of zinc and cadmium[J].Journal of Safety and Environment,2020,20(3):1176-1184. doi: 10.13637/j.issn.1009-6094.2019.0660
    [17] 赵杨迪,潘远智,刘碧英,等.Cd、Pb单一及复合污染对花叶冷水花生长的影响及其积累特性研究[J].农业环境科学学报,2012,31(1):48-53.

    ZHAO Y D,PAN Y Z,LIU B Y,et al.Pilea cadierei Gagnep.et Guill' s Growth and accumulation under single and combined pollution of Cd and Pb[J].Journal of Agro-Environment Science,2012,31(1):48-53.
    [18] 李悦,谢诗,陈忠林,等.锌、苯并[a]芘及其复合胁迫对小麦幼苗生长及抗氧化酶的影响[J].生态学杂志,2013,32(2):358-362.

    LI Y,XIE S,CHEN Z L,et al.Impacts of zinc,benzo[a]pyrene,and their combination on the growth and antioxidant enzymes activities of wheat(Triticum aestivum L.) seedlings[J].Chinese Journal of Ecology,2013,32(2):358-362.
    [19] 朱江.镉与菲复合污染对安德爱胜蚓(Eisenia andrei)体腔细胞凋亡的影响[J].烟台大学学报(自然科学与工程版),2010,23(3):198-203.

    ZHU J.Single and joint stress of Cd and phe on rate of early apoptotic coelomcytes of earthworms (Eisenia andrei)[J].Journal of Yantai University (Natural Science and Engineering Edition),2010,23(3):198-203.
    [20] 朱江.镉与菲复合污染对安德爱胜蚓(Eisenia andrei)溶酶体膜稳定性的影响[J].上海交通大学学报(农业科学版),2010,28(4):355-360.

    ZHU J.Study on neutral red retention time of single and joint stress of Cd and phe on earthworms (Eisenia andrei)[J].Journal of Shanghai Jiao Tong University (Agricultural Science),2010,28(4):355-360.
    [21] 崔春燕,沈根祥,胡双庆,等.铬(Ⅵ)和菲单一及复合暴露对赤子爱胜蚓的急性毒性效应研究[J].农业环境科学学报,2015,34(11):2070-2075. doi: 10.11654/jaes.2015.11.005

    CUI C Y,SHEN G X,HU S Q,et al.Acute toxicity of single and co-exposure of chromium(Ⅵ) and phenanthrene to Eisenia foetida[J].Journal of Agro-Environment Science,2015,34(11):2070-2075. doi: 10.11654/jaes.2015.11.005
    [22] 宋莹莹,袁秀堂,张升利,等.苯并[a]芘、镉单一及复合污染对双齿围沙蚕3刚节疣足幼体发育的影响[J].海洋环境科学,2011,30(3):333-336. doi: 10.3969/j.issn.1007-6336.2011.03.007

    SONG Y Y,YUAN X T,ZHANG S L,et al.Single and joint toxic effects of benzo(a)pyrene and cadmium on development of three-setiger juvenile of polychaete Pernereis aibuhitensis Grube[J].Marine Environmental Science,2011,30(3):333-336. doi: 10.3969/j.issn.1007-6336.2011.03.007
    [23] 关小红,谢嫔.环境中金属离子与有机污染物复合污染研究进展[J].土木与环境工程学报,2019,41(1):120-128.

    GUAN X H,XIE P.Literature review of combined pollution of metal ions and organic pollutants[J].Journal of Civil and Environmental Engineering,2019,41(1):120-128.
    [24] XIA Q,PENG C,LAMB D,et al.Effects of arsenic and cadmium on bioaccessibility of lead in spiked soils assessed by Unified BARGE Method[J].Chemosphere,2016,154:343-349. doi: 10.1016/j.chemosphere.2016.03.133
    [25] CHEN S N,YIN H,YE J S,et al.Effect of copper(Ⅱ) on biodegradation of benzo[a]pyrene by Stenotrophomonas maltophilia[J].Chemosphere,2013,90(6):1811-1820. doi: 10.1016/j.chemosphere.2012.09.009
    [26] GAO Y Z,XIONG W,LING W T,et al.Sorption of phenanthrene by soils contaminated with heavy metals[J].Chemosphere,2006,65(8):1355-1361. doi: 10.1016/j.chemosphere.2006.04.030
    [27] TAO Y Q,XUE B,YANG Z,et al.Effects of metals on the uptake of polycyclic aromatic hydrocarbons by the cyanobacterium Microcystis aeruginosa[J].Chemosphere,2015,119:719-726. doi: 10.1016/j.chemosphere.2014.08.013
    [28] TAO Y Q,LI W,XUE B,et al.Different effects of copper(Ⅱ),cadmium(Ⅱ) and phosphate on the sorption of phenanthrene on the biomass of cyanobacteria[J].Journal of Hazardous Materials,2013,261:21-28. doi: 10.1016/j.jhazmat.2013.06.062
    [29] GAUTHIER P T,NORWOOD W P,PREPAS E E,et al.Metal-PAH mixtures in the aquatic environment:a review of co-toxic mechanisms leading to more-than-additive outcomes[J].Aquatic Toxicology,2014,154:253-269. doi: 10.1016/j.aquatox.2014.05.026
    [30] MOREAU C J,KLERKS P L,HAAS C N.Interaction between phenanthrene and zinc in their toxicity to the sheepshead minnow (Cyprinodon variegatus)[J].Archives of Environmental Contamination and Toxicology,1999,37(2):251-257. doi: 10.1007/s002449900512
    [31] THAVAMANI P,MALIK S,BEER M,et al.Microbial activity and diversity in long-term mixed contaminated soils with respect to polyaromatic hydrocarbons and heavy metals[J].Journal of Environmental Management,2012,99:10-17.
    [32] LIN C W,CHENG Y W,TSAI S L.Influences of metals on kinetics of methyl tert-butyl ether biodegradation by Ochrobactrum cytisi[J].Chemosphere,2007,69(9):1485-1491. doi: 10.1016/j.chemosphere.2007.04.057
    [33] LI X Z,WANG M E,CHEN W P,et al.Ecological risk assessment of polymetallic sites using weight of evidence approach[J].Ecotoxicology and Environmental Safety,2018,154:255-262. doi: 10.1016/j.ecoenv.2018.02.047
    [34] DAGNINO A,SFORZINI S,DONDERO F,et al.A weight-of-evidence approach for the integration of environmental ‘triad’ data to assess ecological risk and biological vulnerability[J].Integrated Environmental Assessment and Management,2008,4(3):314-326. doi: 10.1897/IEAM_2007-067.1
    [35] SEMENZIN E,CRITTO A,RUTGERS M,et al.Integration of bioavailability,ecology and ecotoxicology by three lines of evidence into ecological risk indexes for contaminated soil assessment[J].Science of the Total Environment,2008,389(1):71-86. doi: 10.1016/j.scitotenv.2007.08.032
    [36] 李勖之.城市土壤重金属与环草隆复合污染对蚯蚓的生态效应研究[D].合肥:中国科学技术大学,2018.
    [37] RIBÉ V,AULENIUS E,NEHRENHEIM E,et al.Applying the Triad method in a risk assessment of a former surface treatment and metal industry site[J].Journal of Hazardous Materials,2012,207/208:15-20. doi: 10.1016/j.jhazmat.2011.07.120
    [38] AWUAH K F,JEGEDE O,HALE B,et al.Introducing the adverse ecosystem service pathway as a tool in ecological risk assessment[J].Environmental Science & Technology,2020,54(13):8144-8157.
    [39] SHAW J L A,JUDY J D,KUMAR A,et al.Incorporating transgenerational epigenetic inheritance into ecological risk assessment frameworks[J].Environmental Science & Technology,2017,51(17):9433-9445.
    [40] 刘文慧,李湘凌,章康宁,等.基于改进Hakanson法的水稻根系土壤重金属生态风险评价[J].环境科学研究,2020,33(11):2613-2620.

    LIU W H,LI X L,ZHANG K N,et al.Ecological risk assessment of heavy metals in paddy soil based on improved Hakanson method[J].Research of Environmental Sciences,2020,33(11):2613-2620.
    [41] PENG J Y,CHEN Y N,XIA Q,et al.Ecological risk and early warning of soil compound pollutants (HMs,PAHs,PCBs and OCPs) in an industrial city,Changchun,China[J].Environmental Pollution,2021,272:116038. doi: 10.1016/j.envpol.2020.116038
    [42] 范婧婧,周友亚,王淑萍,等.基于DIN测试的场地土壤PAHs生物可给性及健康风险研究[J].环境科学研究,2020,33(11):2629-2638. doi: 10.13198/j.issn.1001-6929.2020.05.48

    FAN J J,ZHOU Y Y,WANG S P,et al.Bioaccessibility and health risk of PAHs in site soil based on DIN test[J].Research of Environmental Sciences,2020,33(11):2629-2638. doi: 10.13198/j.issn.1001-6929.2020.05.48
    [43] 唐文忠,孙柳,单保庆.土壤/沉积物中重金属生物有效性和生物可利用性的研究进展[J].环境工程学报,2019,13(8):1775-1790. doi: 10.12030/j.cjee.201902041

    TANG W Z,SUN L,SHAN B Q.Research progress of bioavailability and bioaccessibility of heavy metals in soil or sediment[J].Chinese Journal of Environmental Engineering,2019,13(8):1775-1790. doi: 10.12030/j.cjee.201902041
    [44] NG J C,JUHASZ A,SMITH E,et al.Assessing the bioavailability and bioaccessibility of metals and metalloids[J].Environmental Science and Pollution Research,2015,22(12):8802-8825. doi: 10.1007/s11356-013-1820-9
    [45] RATHNAYAKE I V N,MEGHARAJ M,NAIDU R.Green fluorescent protein based whole cell bacterial biosensor for the detection of bioavailable heavy metals in soil environment[J].Environmental Technology & Innovation,2021,23:101785.
    [46] ARDESTANI M M,van STRAALEN N M,van GESTEL C A M.The relationship between metal toxicity and biotic ligand binding affinities in aquatic and soil organisms:a review[J].Environmental Pollution,2014,195:133-147. doi: 10.1016/j.envpol.2014.08.020
    [47] FEIN J B.Advanced biotic ligand models:using surface complexation modeling to quantify metal bioavailability to bacteria in geologic systems[J].Chemical Geology,2017,464:127-136. doi: 10.1016/j.chemgeo.2016.10.001
    [48] 李雯雯,王晓南,高祥云,等.基于不同毒性终点的壬基酚生态风险评价[J].环境科学研究,2019,32(7):1143-1152. doi: 10.13198/j.issn.1001-6929.2019.03.14

    LI W W,WANG X N,GAO X Y,et al.Ecological risk assessment of nonylphenol based on different toxic endpoints[J].Research of Environmental Sciences,2019,32(7):1143-1152. doi: 10.13198/j.issn.1001-6929.2019.03.14
    [49] United States Environmental Protection Agency (US EPA).Guidance for developing ecological soil screening levels[R/OL].Washington DC:United States Environmental Protection Agency (US EPA), (2005-02)[2022-05-25].https://www.epa.gov/sites/default/files/2015-09/documents/ecossl_guidance_chapters.pdf.
    [50] WARNE M S J,DAM R V.NOEC and LOEC data should no longer be generated or used[J].Australasian Journal of Ecotoxicology,2008,14(1):1-5.
    [51] Canadian Council of Ministers of the Environment (CCME).A protocol for the derivation of environmental and human health soil quality guidelines[R/OL].Ottawa:Canadian Council of Ministers of the Environment (CCME),2006[2022-05-25].https://publications.gc.ca/collections/collection_2010/ccme/ En108-4-8-2006-eng.pdf.
    [52] National Environment Protection Council.National environment protection (assessment of site contamination) amendment measure 2013 (No.1)[R/OL].Canberra,Australia:National Environment Protection Council,(2013-04)[2022-05-25].https://www.legislation.gov.au/Details/F2013L00768/Download.
    [53] European Commission Joint Research Centre.Derivation methods of soil screening values in Europe:a review and evaluation of national procedures towards harmonization[R/OL].Ispra:European Commission Joint Research Centre,2007[2022-05-25].http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=239C357D57B35E5FCDBD17B638DA3FB3?doi=10.1.1.397.2705&rep=rep1&type=pdf
    [54] 李星,林祥龙,孙在金,等.我国典型土壤中铜对白符跳(Folsomia candida)的毒性阈值及其预测模型[J].环境科学研究,2020,33(3):744-750.

    LI X,LIN X L,SUN Z J,et al.Toxicity thresholds and prediction model of copper to soil-dwelling springtail (Folsomia candida) in Chinese soils[J].Research of Environmental Sciences,2020,33(3):744-750.
    [55] SMOLDERS E,OORTS K,van SPRANG P,et al.Toxicity of trace metals in soil as affected by soil type and aging after contamination:using calibrated bioavailability models to set ecological soil standards[J].Environmental Toxicology and Chemistry,2009,28(8):1633-1642. doi: 10.1897/08-592.1
    [56] 雷炳莉,黄圣彪,王子健.生态风险评价理论和方法[J].化学进展,2009,21(Suppl 1):350-358.

    LEI B L,HUANG S B,WANG Z J.Theories and methods of ecological risk assessment[J].Progress in Chemistry,2009,21(Suppl 1):350-358.
    [57] 冯精兰,余浩,刘书卉,等.新乡市地表水体HCHs和DDTs的分布特征及生态风险评价[J].环境科学,2015,36(8):2849-2856. doi: 10.13227/j.hjkx.2015.08.016

    FENG J L,YU H,LIU S H,et al.Distribution characteristics and ecological risk assessment of HCHs and DDTs in surface water bodies in Xinxiang[J].Environmental Science,2015,36(8):2849-2856. doi: 10.13227/j.hjkx.2015.08.016
    [58] WANG Z,WANG Y,MA X D,et al.Probabilistic ecological risk assessment of typical PAHs in coastal water of Bohai Sea[J].Polycyclic Aromatic Compounds,2013,33(4):367-379. doi: 10.1080/10406638.2013.781040
    [59] SHI Y J,XU X B,LI Q F,et al.Integrated regional ecological risk assessment of multiple metals in the soils:a case in the region around the Bohai Sea and the Yellow Sea[J].Environmental Pollution,2018,242:288-297. doi: 10.1016/j.envpol.2018.06.058
    [60] United States Environmental Protection Agency (US EPA).Guiding principles for montecarlo analysis[R/OL].Washington DC:United States Environmental Protection Agency (US EPA),(1997-03)[2022-05-25].https://www.epa.gov/sites/default/files/2014-11/documents/montecar.pdf
    [61] KOOISTRA L,HUIJBREGTS M A J,RAGAS A M J,et al.Spatial variability and uncertainty in ecological risk assessment:a case study on the potential risk of cadmium for the little owl in a Dutch River flood plain[J].Environmental Science & Technology,2005,39(7):2177-2187.
    [62] BEYER J,PETERSEN K,SONG Y,et al.Environmental risk assessment of combined effects in aquatic ecotoxicology:a discussion paper[J].Marine Environmental Research,2014,96:81-91. doi: 10.1016/j.marenvres.2013.10.008
    [63] BACKHAUS T,FAUST M.Predictive environmental risk assessment of chemical mixtures:a conceptual framework[J].Environmental Science & Technology,2012,46(5):2564-2573.
    [64] ALTENBURGER R,WALTER H,GROTE M.What contributes to the combined effect of a complex mixture?[J].Environmental Science & Technology,2004,38(23):6353-6362.
    [65] WANG Z,ZHANG F,WANG D G.Predicting joint toxicity of chemicals by incorporating a weighted descriptor into a mixture model:cases for binary antibiotics and binary nanoparticles[J].Ecotoxicology and Environmental Safety,2022,236:113472. doi: 10.1016/j.ecoenv.2022.113472
    [66] CHEN C,WANG Y H,QIAN Y Z,et al.The synergistic toxicity of the multiple chemical mixtures:implications for risk assessment in the terrestrial environment[J].Environment International,2015,77:95-105. doi: 10.1016/j.envint.2015.01.014
    [67] GINEBREDA A,KUZMANOVIC M,GUASCH H,et al.Assessment of multi-chemical pollution in aquatic ecosystems using toxic units:compound prioritization,mixture characterization and relationships with biological descriptors[J].Science of the Total Environment,2014,468/469:715-723. doi: 10.1016/j.scitotenv.2013.08.086
    [68] PERRODIN Y,BOILLOT C,ANGERVILLE R,et al.Ecological risk assessment of urban and industrial systems:a review[J].Science of the Total Environment,2011,409(24):5162-5176. doi: 10.1016/j.scitotenv.2011.08.053
    [69] 陈瑾,刘奕梅,张建英.基于物种敏感性分布的微囊藻毒素与氮污染水体生态风险评估[J].应用生态学报,2014,25(4):1171-1180. doi: 10.13287/j.1001-9332.2014.0122

    CHEN J,LIU Y M,ZHANG J Y.Aquatic ecological risk assessment of microcystins and nitrogen pollution based on species sensitivity distribution[J].Chinese Journal of Applied Ecology,2014,25(4):1171-1180. doi: 10.13287/j.1001-9332.2014.0122
    [70] QIN L T,LIU S S,ZHANG J,et al.A novel model integrated concentration addition with independent action for the prediction of toxicity of multi-component mixture[J].Toxicology,2011,280(3):164-172. doi: 10.1016/j.tox.2010.12.007
    [71] DYER S,ST J WARNE M,MEYER J S,et al.Tissue residue approach for chemical mixtures[J].Integrated Environmental Assessment and Management,2011,7(1):99-115. doi: 10.1002/ieam.106
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  444
  • HTML全文浏览量:  83
  • PDF下载量:  152
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-07
  • 修回日期:  2022-08-27

目录

    /

    返回文章
    返回